
Testing in Research, and
Getting Neural Networks To Actually
Learn Something
This document is split into two main parts: the first covers how you can trust your code, and the
second is how you tweak and debug models once you trust your code.

Why bother? 2
Cognitive Load 2

Testing techniques 3
Abstraction 3
Types and Shapes 4
Integration Testing and Oracles 5
Other people’s code 5

Getting neural networks to actually learn something 7
Start small and work up to it 7
Use baselines and upper bounds 7

Deliberate overfitting 7
Upper-bound performance 8

Keep track of where you are on the bias-variance tradeoff 8
Regularization is king 9
Data augmentation and synthetic data 10

Levers you can pull 10

Why bother?
Research code is, by nature, constantly shifting. We’re often working out the exact hypothesis to
be testing while simultaneously developing the techniques needed to verify it. It is often the case
that, in pursuing a single hypothesis, we have to develop and discard a series of
sub-hypotheses and techniques before we find the full set that works.

In that sense, we’re writing code to reach a target that constantly changes, sometimes even
before we’re reached it. Parts of code become outdated, and functions you are writing change
what they need to do, sometimes even before a previous rewrite is complete.

It's crucial that we can trust our code as we run experiments. A false-negative experiment at the
wrong time will cost you time, and could cost you a paper, an entire discovery, or more.

Testing is the only good way we have to believe what your code tells you.

Cognitive Load
The limiting factor when debugging code is your cognitive load. When you are digging through
code that isn’t working, you generally want the set of states that the system could be in at each
point to be as small as possible.

We already do this while writing code (abstraction! objects!), and writing good tests will help us
reduce the cognitive load while debugging.

This notion of cognitive load was best expressed by Brian Kernighan as:

"Debugging is twice as hard as writing the code in the first place. Therefore, if you write the
code as cleverly as possible, you are, by definition, not smart enough to debug it."

- Kernighan's law.

https://en.wikipedia.org/wiki/Brian_Kernighan

Testing techniques
For every bit of code that takes more than one sentence to explain, you should write some basic
unit tests1 to catch bugs. Here are some examples of unit tests you could write:

● Some basic values you can easily compute by hand or write down as an expression.
(general function tests)

● More values that are close to existing functions.
● Values close to discontinuities or branches in the code. (branch coverage tests.)
● Illegal or disallowed input values, with a check to ensure that your function either throws

an appropriate error or propagates the values.
● For bugs you have already caught and fixed (regression tests)

As a general rule, your test cases should be individually terse and cover the most common code
paths. When writing tests, add a comment explaining what the test does, this will help you
quickly figure out what the problem is.

And finally, remember that tests make it less likely that your code has bugs; they cannot
guarantee they don’t have any.

Example: we have implemented a SmoothReLU function in PyTorch, that is:
lambda x: x**2 if 0 < x < 1 else torch.clamp(x, min=0)
To test this, and its first derivative, we would write these tests:

❏ Values in the three code-path ranges: (-1, 0.5, 2)

❏ Edge-case values: (0.0, 1e-13, 1e+13, 1.0, 1.0 + 1e-13, 1.0 - 1e-13)

❏ Weird values: (NaN, +Inf, -Inf), ensure NaNs are propagated to the output.

❏ Test gradient computation for all these (we’re going to be using this for autodiff, and we
want to be sure that the gradient is well-defined and correct around the discontinuous points
0.0, 1.0)

Abstraction
Every research project, at one point or another, involves horribly written spaghetti code with
unclear dependencies. We all know this is bad, but I imagine we all do it. I certainly do.

One of the benefits of writing tests is that it forces you to make clean(ish) abstractions right from
the start. If you find you need to test a bit of code inside a function, consider making it a
single-purpose function. (By convention, in Python, functions starting with _ are not meant for
use outside the file they are defined in. Use that!)

Some additional tips:

1 Here we’re talking about unit tests. We’ll cover integration and system/end-to-end tests later.

● A clunky abstraction is better than none.
● Wherever possible, make dependencies explicit.
● If you have hyperparameters or global parameters, wrap them in an immutable object

and pass the object around.
● Parametrize your scripts as much as possible; use an argument parser like argparse

or a configuration manager like FAIR’s Hydra.

One of the benefits of abstraction is compatibility between modules. Designing incompatible
abstractions is also a useful technique:

● if the meaning of a function changes, change the name! (example: when the function
changes from computing total loss to mean loss, change the name accordingly!)

● If you have a function with multiple return values, use a dictionary with named keys
instead of a tuple. You can then change or remove return values and have dependent
code fail.

A word of caution for people using Jupyter Notebooks: it is possible for the global namespace to
have functions that have been removed. Consider periodically clearing the output and restarting
the kernel to prevent accidentally depending on removed code.

Types and Shapes
Type systems are your friend when it comes to preventing entire classes of bugs.

If your experiments involve structured data, define custom types and annotate your functions to
enforce them. This prevents entire classes of bugs, especially when you have data that looks
identical but means very different things.

Example: if you are computing a continuous-time ODE, you will often have some state x, and
some time-derivative dx. These will be the same shape and likely the same type, but
successor(x, dx) and successor(dx, x) have vastly different meanings! Wrap or
annotate them with a custom type and you will eliminate this type of error.

Runtime shape checking is also useful to prevent shape-related bugs. Even if a malformed
shape would result in some error being thrown as the function executes, it is generally easier to
test for this ahead of time.

You should enforce type- and shape-checking. A common (if repetitive) way to do it is to check
types with isinstance and structure with .shape wherever needed. To automate this in
Python, you could try using mypy for static checking and pydantic for dynamic type
enforcement. I’ve found support for NumPy and PyTorch to still be a little spotty, but your
mileage may vary. (Thinc.ai is a newer Python framework for handling neural networks that does
this natively, but I have not yet tried it.)

https://docs.python.org/3/howto/argparse.html
https://hydra.cc/
https://thinc.ai/docs

As an aside, NaN poisoning is a common technique for catching computational errors: most
functions that deal with floating-point input values will return NaN if any of the inputs are NaN.
Any computation errors propagate up the computation graph (“poisoning” the computation). You
should (at minimum) check if any of your loss terms are unexpectedly NaN so you can debug
that.

Integration Testing and Oracles
When we pull together (individually unit-tested) parts into a script, we need to do some
integration testing to ensure the code works as a whole.

A general way to do this is to restrict the problem domain: we either limit the input, the model, or
structure of either so we restrict the output and can manually test this. You can do this by:

● Switching out your deep model for a linear model and comparing it to an existing
implementation (like scipy.stats.linregress)

● Creating synthetic input data so you know what the output distribution should look like.
● Using a small problem and a reference implementation and checking the outputs match.

(Oracle testing)
● Using an existing, known problem to check that your code performs as it should.

We’ll be discussing these approaches in the second part, where we look at failure analysis of
neural networks.

Other people’s code
Be careful when using other people’s code. In my experience, the biggest time-waster is in the
double illusion of transparency. This happens when the original developer makes one set of
assumptions, you make a different set of assumptions, and the words used in the
documentation and/or communication “make sense” to both people while meaning different
things.

When confronted with some unexpected behavior and you suspect this is happening, the best
way is to write a pair of tests: the simplest possible test that should succeed, and the simplest
possible test that should fail. If you write these as executable code, you can then add this to the
ensemble of tests (with comments explaining them).2

There are other risks, of course:

● Implementations may or may not be numerically stable around certain points.
● Floating point size and handling is slightly different between different languages,

particularly languages that compile code down. For example, when using Julia code in
Python, the floating point behavior is slightly different.

2 I used the simplest-pair-of-tests technique when teaching Intro to AI, and it really helped make both
students and me think critically about their understanding of concepts and code.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html

A general way to deal with these problems is a combination of simple functions tests (where you
compare outputs between multiple implementations) and oracle tests (structured or limited input
to an implementation evaluated by another script.)

Getting neural networks to actually learn something
Once you are double-plus sure your code is doing what you think it is doing, you need to get
your neural network to actually learn whatever task you’ve given it. I assume your goal is to take
a new component (network design, loss function, training method, etc.) and show it working on
a big, difficult problem.

This is the part of research that I have most struggled with, and this is the synthesis of what I
have learned:

Start small and work up to it
To get to your grand demonstration, the best way is to start with a task that is small and not
difficult and to increase size and complexity. This is likely something we all already do, and is
included for completeness. Smaller and simpler data means your training code completes more
quickly, so you can iterate faster.

Consider using subsets of larger datasets to test tasks. A common trick is to use two classes of
CIFAR-10 for initial testing, adding more classes, and eventually moving on to full ImageNet.

Try starting with shallow networks with large layers instead of deeper networks.

Use baselines and upper bounds
A neural network can be a universal function approximator, with emphasis on universal. Two
useful implications of this:

1. With enough training and parameters, you should be able to find some neural network to
over-fit your data.

2. The performance of any function on your task establishes an upper bound on the
performance of some neural network on that task.

Deliberate overfitting

A good way to train a network when you don’t know what network size and hyper-parameters
you should use is to deliberately aim to overfit it. Pick a larger network than you imagine you
need and experiment with hyperparameters until you observe very low loss on your training set
but poorly in your held-out set. You can even reduce the size of your training set if necessary to
find some network that overfits.

Once you have done that, you can apply your usual steps to reduce overfitting: reduce the
network size, change the structure of your network, etc. You have a great starting point from
which to set hyperparameters.

Upper-bound performance

Since neural networks can (in theory3) approximate any function, the performance of any
function on your task can act as an upper bound on the performance of some neural network on
the same task. The requirement here is that the loss is computed the same way.

This means that you can easily figure out what a “good” loss looks like using classic machine
learning techniques: any kind of logistic/linear regression, boosted classifier,
k-nearest-neighbors, etc. If you have a known closed-form solution, generate new
parameterizations by replacing known parts with arbitrary ones.

Example: to lower-bound the performance of some learned function which was𝑓: 𝑅4 → 𝑅
evaluated by the L2 distance of the output.

I divided the input space into cells. For some training set, I grouped the output values by212

which cell the input corresponds to. The weighted sum over all cells of the variance in each cell
is equal to the L2 loss of a function that partitions the input space and guesses the mean value

for each cell. This was about . This suggests that a network should be able to obtain an L210−1

loss of about on the training set.10−1

This also suggests that a good place to start looking for overfitting is a network that has more

than parameters.212

Keep track of where you are on the bias-variance tradeoff
See these lecture notes from Cornell for an explanation. The Bias-variance tradeoff is a helpful
way to conceptualize over- and under-fitting, and is the result of splitting the expected test error
into three parts:

● Noise, the base rate of error inherent in the data. (Example: in MNIST some “1”, “4” and
“9” look like each other because of poor handwriting. Even a trained human couldn’t
consistently answer this.)

● Bias, the expected error from training your model on an infinite amount of data. This
measures the inherent limitations of your model.

● Variance, the expected error from training your model on this particular dataset instead
of an infinite amount of data sampled from the same distribution. This measures model
overfitting to data.4

When training your model, you should log your loss on the training set and the validation set.
Put these together to figure out where you are on the bias-variance tradeoff:

4This is confounded by the difference in distributions in the training and validation sets, so draw them from
the same distribution.

3 Remember that in theory, theory and practice are the same; in practice they are not.

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html

Training Set
Error

Close to noise Close to noise Higher than
noise

Higher than
noise

Validation Set
Error

Close to training
set error

Higher than
training set error

Close to training
set error

Higher than
training set error

You Win! Overfitting.
High Variance,
low Bias regime.

Underfitting.
High Bias,
low Variance

regime.

Train more, or
change your
model entirely.

Over- and under-fitting in a converged model can be fixed by:

● Overfitting
○ Reduce model “capacity” by making the model narrower and/or shallower.5

○ Data augmentation (discussed below)
○ Regularization (discussed below)

● Underfitting
○ Increase model “capacity” by making the model wider and/or deeper,
○ Increase the learning rate

■ If you see a marked improvement in performance at convergence, you
were previously stuck in a local minima.

Regularization is king

Once you have overfit a model to the network (see upper-bound performance), the remaining
work is to find a way to generalize. This is when your development or held-out validation set
comes handy: your objective is to improve performance on that without losing too much
performance on the training set.

Andrew Ng’s course covers this in detail. Watch that! If you have more time, take a look at the
Overfitting and Regularization lectures from CalTech by Yaser Abu-Mostafa.

To regularize a network, you have some options:

● Classic techniques
○ Weight decay (an L2 norm penalty on parameter size)
○ Dropout
○ Early stopping.

● Adding domain-specific features
○ Example: Sine non-linear layers on periodic data
○ Example: Wavelet features on natural image data

● Gradient management, particularly for networks with exploding or vanishing gradients.
○ Adding skip connections (as in ResNets)

5 This is the classic advice, but this 18-page summary of the research on neural network generalization
suggests the notion of “capacity” is a little more complicated.

https://www.coursera.org/learn/deep-neural-network?specialization=deep-learning#syllabus
https://work.caltech.edu/library/
https://lilianweng.github.io/lil-log/2019/03/14/are-deep-neural-networks-dramatically-overfitted.html#regularization-is-not-the-key-to-generalization

○ Normalizing activations (BatchNorm)
● More exotic techniques:

○ Perturbing/resampling network activations
■ Example: the reparameterization technique in Variational Autoencoders.6

○ Adding activation noise, particularly structured noise.
○ Training to be robust to adversarial noise. (Note: I’ve seen a lot of ink spilled on

this, but I don’t know if it actually works. Caveat Emptor.)

Data augmentation and synthetic data

A great way to test this is to create a purely synthetic dataset that lets you control the output
distribution. A classic example of this is, for classification, to sample from different gaussian
models and map this through some transformation7. This way you can control the separability of
your synthetic data by carefully selecting the models and the transformation. You can slowly
make the task more difficult to learn by changing the transformations.

You can also use this approach to either augment or filter a dataset to control the complexity of
the task. Augmentation strategies add copies of existing data with transformations like rotations,
small translations, blurring, etc. Filtering strategies (temporarily) remove data points by some
problem-dependent criteria: typically excluding some difficult subset of the input space.

Example: I was trying to optimize some function , subject to additional constraints,𝑓: 𝑅2 → 𝑅2

which is composed over itself times until the input reaches zero. (i.e. manipulate to𝑛(𝑥) 𝑥 𝑓(𝑥)

minimize such that .)𝑛(𝑥) 𝑓(𝑛(𝑥))(𝑥) = 0

I could easily get the network to overfit, but not to generalize well. I found, by plotting and𝑓(𝑥)
as many networks trained, that the networks were failing to generalize correctly between𝑛(𝑥)

regions A and B that had a sharp boundary between them.

Augmenting data around the A/B boundary did not help. Eventually, I solved it by filtering the
dataset depending on the solver state. That is, we hid points from B until the network overfit to
A, and then presented points from both A and B until it learned a boundary.

There are many, many interesting dataset remixes published online. For MNIST, take a look at
colorMNIST (color transformed), Synthetic Digits (with exotic backgrounds) as examples of this.

Levers you can pull
Ensure you keep a separate development/holdout/validation set of data while evaluating these.
This will prevent you from overfitting to your test set.

7 Tensorflow’s demo does something like this to generate sample data: https://playground.tensorflow.org/
6 I just like this somewhat-related paper.

https://arxiv.org/abs/1312.6114
https://github.com/mkmenta/ColorMNIST
https://www.kaggle.com/prasunroy/synthetic-digits
https://playground.tensorflow.org/
https://papers.nips.cc/paper/2020/file/ac10ff1941c540cd87c107330996f4f6-Paper.pdf

Once you get the network and training in order, you should expect your models to train well in a
reasonably-sized set of hyperparameters. If training is overly sensitive to one parameter, check
that and associated parameters.

Try manipulating all these:

● The solver:
○ Adam optimizers are the default, and they work great for most tasks.

■ They have a momentum that you can tweak.
○ Try classic SGD, RMSprop, Adadelta, and others. (PyTorch documentation.)

● Learning rate: look for a learning rate that makes the loss function look smooth and
generally decreasing on both the training and validation sets.

○ If your learning rate is too high your loss function may oscillate
○ If it is too low:

■ training may get stuck at a loss value well above your upper-bound
estimate even across a large range of hyperparameters.

■ the loss value may decrease very smoothly.
● Batch sizes:

○ Varying the batch size changes the gradients
■ If the batch is too large, the variance of the gradient updates between

batches can be too low and you can get stuck in local minima.
■ If the batch size is too low, the variance of the gradient updates between

batches can be too large. Steps taken for one batch may not be in a
direction that will eventually improve the network’s learning.

○ Shuffle the dataset to ensure that the gradient updates for any one batch are not
biased.

■ Example: If your classification dataset contains all points for class A
followed by all points for class B, and you do not shuffle your minibatches,
your model will get gradient updates for minibatches with only A or B, not
both.

○ For a fair comparison between experiments with different minibatch sizes, ensure
the loss function is the mean, not the sum, of individual losses.

● Non-linearities:
○ ReLU (or Swish) is a popular start!
○ Try Tanh or Sigmoid as well.
○ If your task involves periodic behavior: the SIREN paper shows how periodic

activations (Sine, Cosine) work great to fit periodic data.
○ If your task involves dealing with very deep networks, there are exploding- and

vanishing-gradient problems to watch out for. Consider normalizing activations
(BatchNorm), adding skip connections (a la ResNets), or something more exotic
like spectral normalization.

● Parameter initialization
○ The default initializers are generally good, but this is something to keep in mind.

● Data transformations
○ Normalization

https://pytorch.org/docs/stable/optim.html#
https://arxiv.org/pdf/1710.05941v1.pdf
https://vsitzmann.github.io/siren/
https://en.wikipedia.org/wiki/Batch_normalization
https://arxiv.org/abs/1512.03385

■ Especially for visual tasks, mean subtraction is a venerable trick.
■ PCA/ZCA is very common in medical tasks, and is used as a general

pre-processing step.
○ Task-specific transformations

■ Example: If your data is a combination of distances and angles, such as
(x, theta), you can selectively transform the angles to get (x,
sin(theta), cos(theta)).

■ Example: Some 3D reinforcement learning tasks work better with
quaternion data instead of classic rotation-matrix data. Check publications
from your field for such comparisons.

https://arxiv.org/pdf/1409.1556.pdf
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture18-pca.pdf
https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture18-pca.pdf

