
March 9, 2023
DRAFT

Stable Models and Temporal Difference

Learning

Gaurav Manek

CMU-CS-23-103

March 2023

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

J. Zico Kolter, Chair

David Held

Deepak Pathak

Sergey Levine (Berkeley)

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright © 2023 Gaurav Manek

This research was sponsored by A*STAR Graduate Academy, Robert Bosch GmbH, and the NSS Fellowship.

The views and conclusions contained in this document are those of the author and should not be interpreted

as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.

government or any other entity.

March 9, 2023
DRAFT

Keywords: Lyapunov Stability, Regularization, Deadly Triad, Offline Reinforcement

Learning, Temporal Difference Learning, Reinforcement Learning, Neural Networks, Machine

Learning Theory

March 9, 2023
DRAFT

Abstract

In this thesis, we investigate two different aspects of stability: the

stability of neural network dynamics models and the stability of rein-

forcement learning algorithms. In the first chapter, we propose a new

method for learning Lyapunov-stable dynamical models that is stable

by construction, even when randomly initialized. We demonstrate the

effectiveness of this method on damped multi-link pendulums and show

how it can be used to generate high-fidelity video textures.

In the second and third chapters, we focus on stability issues in

reinforcement learning. In the second chapter, we demonstrate that

regularization, a common approach to addressing instability in temporal

difference (TD) learning, is not always effective. We show that TD

learning can diverge even when regularization is used and demonstrate

this phenomenon in standard examples as well as a novel problem we

construct.

In the third chapter, we propose a new resampling strategy called

Projected Off-Policy TD (POP-TD), which resamples TD updates to come

from a convex subset of “safe” distributions. Unlike existing resampling

methods, it need not converge to the on-policy distribution. We show how

this approach can mitigate the distribution shift problem in offline RL on

a task designed to maximize such shift.

Overall, this thesis advances novel methods for dynamics model sta-

bility and training stability in reinforcement learning, questions existing

assumptions in the field, and points to promising directions for stability

in model and reinforcement learning.

March 9, 2023
DRAFT

iv

March 9, 2023
DRAFT

Contents

Introduction vii

1 Learning Stable Dynamics Models 1

1.1 Introduction . 2

1.2 Background and related work . 3

1.3 Joint learning of dynamics and Lyapunov functions 6

1.3.1 Properties of the Lyapunov function 7

1.4 Empirical results . 11

1.4.1 Random networks . 12

1.4.2 n-link pendulum . 12

1.4.3 Video Texture Generation . 13

1.5 Conclusion . 16

1.6 Adaptation to Stable Control and RL 16

2 The Pitfalls of Regularization in Off-Policy TD 19

2.1 Introduction . 21

2.2 Preliminaries and Notation . 25

2.3 Our Counterexamples . 26

2.3.1 Regularization cannot always mitigate off-policy training error. 27

2.3.2 Small amounts of regularization can cause large increases in

training error. 34

2.3.3 Emphatic approaches and our counterexample 36

v

March 9, 2023
DRAFT

2.3.4 Applied to multi-layer networks 46

2.3.5 Over-parameterization does not solve this problem 47

2.4 Related Work . 49

2.5 Relationship to modern RL algorithms 50

2.6 Conclusion . 50

3 Projected Off-Policy TD for Offline Reinforcement Learning 55

3.1 Introduction . 56

3.2 Related Work . 57

3.3 Problem Setting and Notation . 59

3.3.1 The Non-Expansion Criterion (NEC) 60

3.4 Projected Off-Policy TD (POP-TD) 62

3.4.1 I- and M-projections . 63

3.4.2 Optimizing the distribution 63

3.4.3 The structure of Z . 64

3.4.4 Update rules . 66

3.4.5 POP-Q-Learning . 67

3.5 Experiments and Discussion . 69

3.5.1 POP-Q on GridWorld . 70

3.5.2 Linear POP-Q on GridWorld 72

3.6 Conclusion . 73

Conclusion 79

Notation and Definitions 81

Bibliography 82

vi

March 9, 2023
DRAFT

Introduction1

In this thesis we examine two notions of stability: the predictions of neural network2

dynamics models and the training of reinforcement learning algorithms. The transition3

from the first notion of stability to the second is natural: the parameters of a stably4

trained model circumscribes, in parameter-space, a stable trajectory. This relationship5

between stabilities has significant precedence in the foundational work of Temporal6

Difference (TD) learning theory [53].7

In the first chapter we propose a new method for learning Lyapunov-stable dynamical8

models and the certifying Lyapunov function in a fully end-to-end manner. This9

works by carefully constructing a neural network to act as a Lyapunov function and10

learning a separate, unconstrained model. These two models are combined with a11

novel reprojection layer to produce models that are guaranteed stable by construction,12

even without any training. We show that such learning systems are able to model13

simple dynamical systems such as pendulums, and can be combined with additional14

deep generative models to learn complex dynamics, such as video textures, in a fully15

end-to-end fashion, given Temporal Difference (TD) data.16

Next, we attempted to extend this work to learn control policies that produce stable17

trajectories. This is a natural extension of the previous work, equivalent to only18

minor changes to the construction of the dynamics model. Our work necessarily19

learned from TD data collected by a different policy (i.e. offline). Despite immense20

effort and many experiments, this technique never converged to reasonable solutions,21

even with regularization. This led to the insights in the second chapter.22

vii

March 9, 2023
DRAFT

TD is combined with function approximation (i.e. neural networks) and off-policy23

learning in modern Reinforcement Learning. However, these three ingredients are24

known as the deadly triad [48, p. 264], because they are known to cause severe25

instability in the learning process Tsitsiklis and Van Roy [53]. While many variants of26

TD will provably converge despite the training instability, the quality of the solution27

at convergence is typically arbitrarily poor [24]. In the literature, there is a general28

belief that regularization can mitigate this instability, which is supported by basic29

analysis on the three standard examples.30

However, this is not true! In the second chapter, we introduce a series of new31

counterexamples that are resistant to regularization. We demonstrate the existence32

of “vacuous” examples, which never do better than the limiting case regardless of the33

amount of regularization. This problem persists in most TD-based algorithms, which34

covers a wide swath of the RL literature; we make our analysis concrete by showing35

how this example forces the error bounds derived by Zhang, Yao, and Whiteson36

[62] to permit vacuous solutions. We further demonstrate that regularization is not37

monotonic in TD contexts, and that it is possible for regularization to increase error38

(or cause divergence) around some critical values. We extend these examples to the39

neural network case, showing that these effects are not limited to the linear case40

and making the case for greater care in regularization in practical RL applications.41

Finally, contemporary versions of Emphatic-TD generally use a reversed version of42

TD to estimate the resampling function, which opens them up to instability from43

the same source as the original TD. We show that these techniques are similarly44

vulnerable. We show that regularization is not a panacea for stability in TD learning.45

In the third chapter, we investigate new methods for stable TD learning that are46

resistant to off-policy divergence and that do not rely on regularization. Starting47

from previous work by Kolter [24], we derive Projected Off-Policy TD, which reweighs48

TD updates to the closest distribution where the TD is non-expansive at the fixed49

point of its training. We learn the reweighing factors in-the-loop with vanilla TD50

methods (i.e. optimized as an augmented objective using stochastic gradient descent)51

and then apply those reweighing factors to each TD update. Crucially, this is distinct52

viii

March 9, 2023
DRAFT

from contemporary work in the literature in that POP-TD does not resample to on-53

policy distribution, instead finding a “safe” distribution close to the data distribution.54

Applying this to a novel offline RL example, we can clearly demonstrate how POP-TD55

mitigates the distributional shift between the dataset and the learned policy [30]56

while resampling as little as possible.57

We conclude with a discussion on future directions that our work on stable models58

may take.59

ix

March 9, 2023
DRAFT

x

March 9, 2023
DRAFT

Chapter 160

Learning Provably Stable Deep61

Dynamics Models62

Deep networks are commonly used to model dynamical systems, predicting how the63

state of a system will evolve over time (either autonomously or in response to control64

inputs). Despite the predictive power of these systems, it has been difficult to make65

formal claims about the basic properties of the learned systems. In this chapter,66

we propose an approach for learning dynamical systems that are guaranteed to be67

stable over the entire state space. The approach works by jointly learning a dynamics68

model and Lyapunov function that guarantees non-expansiveness of the dynamics69

under the learned Lyapunov function. These two models are combined with a novel70

reprojection layer to produce models that are guaranteed stable by construction,71

even without any training. We show that such learning systems are able to model72

simple dynamical systems such as pendulums, and can be combined with additional73

deep generative models to learn complex dynamics, such as video textures, in a fully74

end-to-end fashion.75

From “Learning Stable Deep Dynamics Models” by Manek and Kolter (2019)76

1

March 9, 2023
DRAFT

1.1 Introduction77

This chapter deals with the task of learning continuous-time dynamical systems.78

Given x(t) ∈ Rn, a state at time t, we wish to model the time-derivative79

ẋ(t) ≡ d

dt
x(t) = f(x(t)) (1.1)80

for some function f : Rn → Rn. Modeling the time evolution of such dynamical81

systems (or with control inputs ẋ(t) = f(x(t), u(t)) for u(t) ∈ Rm) is a foundational82

problem in machine learning, with applications in reinforcement learning, control,83

forecasting, and many other settings. Owing to their representational power, neural84

networks have long been a natural choice for modeling the function f [14, 41, 37, 12].85

However, when using a generic neural network to model dynamics in this setting,86

very little can be guaranteed about the behavior of the learned system, especially87

about its stability. Informally, we say that a model is stable if we can pick a bounded88

set of states and guarantee that once the model enters that set it never leaves. While89

some recent work has begun to consider stability properties of neural networks [6, 45,90

51], it has typically done so by softly enforcing stability as an additional loss term on91

the training data. Consequently, they can say little about the stability of the system92

in unseen states.93

In this paper, we propose an approach to learning neural network dynamics that are94

provably Lyapunov-stable over the entirety of the state space. We do this by jointly95

learning a nominal system dynamics and the certifying Lyapunov function, and then96

reproject the predictions of the nominal model onto the level set of the Lyapunov97

function. This stability is a hard constraint imposed upon the model: unlike recent98

approaches, we do not enforce stability via an imposed loss function but build it99

directly into the dynamics of the model. This means that even a randomly initialized100

model in our proposed model class will be provably stable everywhere in state space.101

The key to this is the design of a proper Lyapunov function, based on input convex102

neural networks [1], which ensures global exponential stability to an equilibrium point103

while still allowing for expressive dynamics.104

2

March 9, 2023
DRAFT

Using these methods, we demonstrate learning dynamics of physical models such as105

n-link pendulums, and show a substantial improvement over generic networks. We106

also show how such dynamics models can be integrated into larger network systems to107

learn dynamics over complex output spaces, combining the model with a variational108

auto-encoder (VAE) [23] to learn dynamic “video textures” [46].109

1.2 Background and related work110

Stability of dynamical systems. We consider the setting of uncontrolled dynamics111

systems ẋ(t) = f(x(t)) for x(t) ∈ Rn. (We will discuss extending this to dynamics112

with control later; this is a non-trivial extension.) Such a system is defined to be113

globally asymptotically stable around the equilibrium point xe = 0 if we have x(t)→ 0114

as t → ∞ for any initial state x(0) ∈ Rn; f is locally asymptotically stable if the115

same holds but only for x(0) ∈ B where B is some bounded set containing the origin.116

Similarly, f is globally or locally exponentially stable if117

∥x(t)∥2 ≤ m∥x(0)∥2e−αt (1.2)118

for some constants m,α ≥ 0 for any x(0) ∈ Rn (B, respectively).119

The area of Lyapunov theory [20, 29] establishes the connection between the various120

types of stability mentioned above and descent according to a particular type of121

function known as a Lyapunov function. Specifically, let V : Rn → R be a continuously122

differentiable positive definite function, i.e., V (x) > 0 for x ̸= 0 and V (0) = 0.123

Lyapunov analysis says that f is stable (according to the different definitions above),124

if and only if we can find some function V as above such the value of this function is125

decreasing along trajectories generated by f . Formally, this is the condition that the126

time derivative V̇ (x(t)) < 0, i.e.,127

V̇ (x(t)) ≡ d

dt
V (x(t)) = ∇V (x)T

d

dt
x(t) = ∇V (x)Tf(x(t)) < 0 (1.3)128

This condition must hold for all x(t) ∈ Rn or for all x(t) ∈ B to ensure global or local129

3

March 9, 2023
DRAFT

stability respectively. Similarly f is globally asymptotically stable if and only if there130

exists positive definite V such that131

V̇ (x(t)) ≤ −αV (x(t)), with c1∥x∥22 ≤ V (x) ≤ c2∥x∥22. (1.4)132

Showing that these conditions imply the various forms of stability is relatively133

straightforward, but showing the converse (that any stable system must obey this134

property for some V) is relatively more complex. In this chapter we are largely135

concerned with the “simpler” of these two directions, as our goal is to enforce136

conditions that ensure stability.137

Stability of linear systems. For a linear system with matrix A138

ẋ(t) = Ax(t) (1.5)139

it is well-known that the system is stable if and only if the real components of the140

the eigenvalues of A are all strictly negative (Re(λi(A)) < 0). Equivalently, the same141

same property can be shown via a positive definite quadratic Lyapunov function142

V (x) = xTQx (1.6)143

for Q ≻ 0. In this case, by Equation 1.4, the following ensures stability:144

V̇ (x(t)) = x(t)TATQx(t) + x(t)TQAx(t) ≤ −αx(t)TQx(t) (1.7)145

i.e., if we can find a positive definite matrix Q ⪰ I with that ATQ+QA+ αQ ⪯ 0146

negative semidefinite. Such bounds (and much more complex extensions) for the147

basis for using linear matrix inequalities (LMIs), as a method to ensure stability of148

linear dynamical systems. The methods also have applicability to non-linear systems,149

and several authors have used LMI analysis to learn non-linear dynamical systems by150

constraining the linearized systems to have global Lyapunov functions [21, 2, 54],151

4

March 9, 2023
DRAFT

Even though the constraints152

Q ⪰ I, ATQ+QA+ αQ ⪯ 0 (1.8)153

are convex in A and Q separately, they are not convex in A and Q jointly. Thus, the154

problem of jointly learning a stable linear dynamical system and its corresponding155

Lyapunov function, even for the simple linear-quadratic setting, is not a convex156

optimization problem, and alternative techniques such as alternating minimization157

need to be employed instead. Past work has considered different heuristics, such as158

approximately projecting a dynamics function A onto the (non-convex) stable set of159

matrices with eigenvalues Re(λi(A)) < 0 [3]. It is no surprise, then, that learning160

stable non-linear systems is even more challenging:161

Stability of non-linear systems For general non-linear systems, establishing162

stability via Lyapunov techniques is typically even more challenging. For the typical163

task here, which is that of establishing stability of some known dynamics ẋ(t) =164

f(x(t)), finding a suitable Lyapunov function is often more an art than a science.165

Although some general techniques such as sum-of-squares certification [43, 42] provide166

general methods for certifying stability of polynomial (or similar) systems, these are167

often expensive and don’t easily scale to high dimensional systems. Our proposed168

approach here is able to learn provably stable systems without solving this (generally169

hard) problem. Specifically, while it is difficult to find a Lyapunov function that170

certifies the stability of some known system, we exploit the fact that it is relatively171

much easier to enforce some function to behave in a stable manner according to a172

Lyapunov function.173

Lyapunov functions in deep learning Finally, there has been a small set of174

recent work exploring the intersection of deep learning and Lyapunov analysis [6,175

45, 51]. Although related to our work here, the approach in this past work is quite176

different. As is more common in the control setting, these papers try to learn neural-177

network-based Lyapunov functions for control policies, but in way that enforces178

5

March 9, 2023
DRAFT

stability via a loss penalty. For instance Richards et al., [45] optimize a loss function179

that encourages V̇ (x) ≤ 0 for x in some training set. In contrast, our work guarantees180

absolute stability everywhere in the state space, not just at a small set of points; but181

only for a simpler setting where the entire dynamics are to be learned (and hence can182

be “forced” to be stable) rather than a stabilizing controller for known dynamics.183

1.3 Joint learning of dynamics and Lyapunov func-184

tions185

The intuition of the approach we propose in this paper is straightforward: instead186

of learning a dynamics function and attempting to separately verify its stability via187

a Lyapunov function, we propose to jointly learn a dynamics model and Lyapunov188

function, where the dynamics is inherently constrained to be stable (everywhere in the189

state space) according to the Lyapunov function.190

Specifically, following the principles mentioned above, let f̂ : Rn → Rn denote a191

“nominal” dynamics model, and let V : Rn → R be a positive definite function:192

V (x) ≥ 0 for x ≠ 0 and V (0) = 0. Then in order to (provably, globally) ensure193

that a dynamics function is stable, we can simply project f̂ such that it satisfies the194

condition195

∇V (x)T f̂(x) ≤ −αV (x) (1.9)196

i.e., we define the dynamics197

f(x) = Proj
(
f̂(x), {f : ∇V (x)Tf ≤ −αV (x)}

)
=

f̂(x) if ∇V (x)T f̂(x) ≤ −αV (x)

f̂(x)−∇V (x)∇V (x)T f̂(x)+αV (x)

∥∇V (x)∥22
otherwise

= f̂(x)−∇V (x)
ReLU

(
∇V (x)T f̂(x) + αV (x)

)
∥∇V (x)∥22

(1.10)198

6

March 9, 2023
DRAFT

March 8, 2023
DRAFT

•xe

increasing V

•x

Trajectory and Lyapunov function

•

f̂(x)
−g(x)

f(x)

Case 1

•

g(x)

f(x) = f̂(x)

Case 2

Figure 1.1: We plot the trajectory and the contour of a Lyapunov func-
tion of a stable dynamical system and illustrate our method. Let g(x) =
∇V (x)

∥∇V (x)∥22
ReLU

(
∇V (x)T f̂(x) + αV (x)

)
. In the first case f̂(x) has a component g(x)

not in the half-space, which we subtract to obtain f(x). In the second case f̂(x) is
already in the half-space, so is returned unchanged.

where Proj(x; C) denotes the orthogonal projection of x onto the point C, and where199

the second equation follows from the analytical projection of a point onto a half-space.200

As long as V is defined using automatic differentiation tools, it is straightforward to201

include the gradient ∇V terms into the definition of f , and our final network can202

be trained just like any other function. The general approach here is illustrated in203

Figure 1.1.204

1.3.1 Properties of the Lyapunov function V205

Although the treatment above seems to make the problem of learning stable systems206

quite straightforward, the subtlety of the approach lies in the choice of the function207

V . Specifically, V needs to be positive definite and needs to have no local optima208

except 0. This is due to Lyapunov decrease condition: recall that we are attempting209

to guarantee stability to the equilibrium point x = 0, yet the decrease condition210

imposed upon the dynamics means that V is decreasing along trajectories of f . If V211

has a local optimum away from the origin, the dynamics can in theory get stuck in212

this location; this manifests itself by the ∥∇V (x)∥22 term going to zero, which results213

in the dynamics becoming undefined at the optima.214

7

March 9, 2023
DRAFT

To enforce these conditions, we make the following design decisions regarding V :215

No local optima. We represent V via an input-convex neural network (ICNN)216

function g : Rn → R [1], which enforces the condition that g(x) be convex in its217

inputs x. Such a network is given by the recurrence218

z1 = σ0(W0x+ b0)

zi+1 = σi(Uizi +Wix+ bi), i = 1, . . . , k − 1

g(x) ≡ zk

. (1.11)219

For layer i+1: Wi are weights mapping from the input x to the i+1 layer activations;220

Ui are positive weights mapping previously layer activations zi to the next layer; bi221

are real-valued biases; and σi are convex, monotonically non-decreasing non-linear222

activations such as the ReLU or smooth variants. It is straightforward to show that223

with this formulation, g is convex in x [1], and indeed any convex function can be224

approximated by such networks [5].225

Positive definite. The ICNN property enforces that V has only a single global226

optimum; for V to be positive definite, we must also enforce that this optimum is227

at x = 0. We could fix this by removing the bias term from Equation 1.11, but228

this would mean we could no longer represent arbitrary convex functions. We could229

also shift whatever global minimum to the origin, but that would require finding230

finding the global minimum during training, which itself is computationally expensive.231

Instead, we take an alternative approach: we shift the function such that V (0) = 0,232

and add a small quadratic regularization term to ensure strict positive definiteness.233

V (x) = σk+1(g(x)− g(0)) + ϵ∥x∥22. (1.12)234

where σk is a positive convex non-decreasing function with σk(0) = 0, g is the ICNN235

defined previously, and ϵ is a small constant. These terms together still enforce236

(strong) convexity and positive definiteness of V .237

8

March 9, 2023
DRAFT

σ(x)

d

σ′(x)

d

Figure 1.2: Rectified Huber Unit (ReHU), necessary for continuously differentiable
Lyapunov functions.

Continuously differentiable. Although not always required, several of the condi-238

tions for Lyapunov stability are simplified if V is continuously differentiable. ReLU239

is discontinuous around 0, and the soft-plus smoothed ReLU is not zero at the origin.240

We use a smoothed version with quadratic knee in [0, d], called the Rectified Huber241

Unit (ReHU):242

σ(x) =


0 if x ≤ 0

x2/2d if 0 < x < d

x− d/2 otherwise

. (1.13)243

An illustration of this activation is shown in Figure 1.2.244

[Optional] Warped input space. Our construction so far guarantees that the245

Lyapunov function has no local optima by making it convex. This is sufficient but not246

necessary, and it may even impose too strict a constraint on the learned dynamics.247

We can relax this function by allowing the input to the ICNN to be warped by any248

continuously differentiable invertible function F : Rn × Rn. i.e., using249

V (x) = σk+1(g(F (x))− g(F (0))) + ϵ∥x∥22. (1.14)250

as the Lyapunov function. Invertibility ensures that the level sets of V , which are251

convex, map to contiguous regions of the composite function g ◦ F . This allows the252

resultant Lyapunov function to be non-convex without having any optima other than253

the global.254

9

March 9, 2023
DRAFT

With these conditions in place, we have the following result.255

Theorem 1. The dynamics defined by256

ẋ = f(x) (1.15)257

are globally exponentially stable to the equilibrium point x = 0. Where f is from258

Eqn. equation 1.10 and V is from Eqn. equation 1.12 or Eqn. equation 1.14, and f̂259

and V functions have finite, bounded weights.260

Details. The proof is straightforward, and relies on the properties of the networks261

created above. First, note that by our definitions we have, for some M ,262

ϵ∥x∥22 ≤ V (x) ≤M∥x∥22 (1.16)263

where the lower bound follows from Eqn. 1.12 and the fact that g is positive. The264

upper bound follows from the fact that the ReHU activation is linear for large x and265

quadratic around 0. This fact in turn implies that V (x) behaves linearly as ∥x∥ → ∞,266

and is quadratic around the origin, so can be upper bounded by some quadratic267

M∥x∥22.268

The fact the V is continuously differentiable means that ∇V (x) (in f) is defined269

everywhere, bounds on ∥∇V (x)∥22 for all x follows from the the Lipschitz property of270

V , the fact that 0 ≤ σ′(x) ≤ 1, and the ϵ∥x∥22 term271

ϵ∥x∥2 ≤ ∥∇V (x)∥2 ≤
k∑

i=1

k∏
j=i

∥Uj∥2∥Wi∥2 (1.17)272

where ∥ · ∥2 denotes the operator norm when applied to a matrix. This implies that273

the dynamics are defined and bounded everywhere owing to the choice of function f̂ .274

Now, consider some initial state x(0). The definition of f implies that275

d

dt
V (x(t)) = ∇V (x)T

d

dt
x(t) = ∇V (x)Tf(x) ≤ −αV (x(t)). (1.18)276

10

March 9, 2023
DRAFT

March 8, 2023
DRAFT

−2 −1 0 1 2
−2

−1

0

1

2

Nominal f̂

−2 −1 0 1 2

Lyapunov Function V

−2 −1 0 1 2

Stable f

Figure 1.3: (left) Nominal dynamics f̂ for random network; (center) Convex positive
definite Lyapunov function generated by random ICNN with constraints from Section
1.3.1; (right) Resulting stable dynamics f .

Integrating this equation gives the bound277

V (x(t)) ≤ V (x(0))e−αt (1.19)278

and applying the lower and upper bounds gives279

ϵ∥x(t)∥22 ≤M∥x(0)∥22e−αt =⇒ ∥x(t)∥2 ≤
M

ϵ
∥x(0)∥2e−αt/2 (1.20)280

as required for global exponential convergence.281

1.4 Empirical results282

We illustrate our technique on several example problems, first highlighting the283

(inherent) stability of the method for random networks, demonstrating learning on284

simple n-link pendulum dynamics, and finally learning high-dimensional stable latent285

space dynamics for dynamic video textures via a VAE model.286

11

March 9, 2023
DRAFT

March 8, 2023
DRAFT

−2 −1 0 1 2
−2

−1

0

1

2
Simulated

−2 −1 0 1 2

Learned f

−2 −1 0 1 2

Learned V

Figure 1.4: Dynamics of a simple damped pendulum. From left to right: the dynamics
as simulated from first principles, the dynamics model f learned by our method, and
the Lyapunov function V learned by our method (under which f is non-expansive).

1.4.1 Random networks287

Although we mention this only briefly, it is interesting to visualize the dynamics288

created by random networks according to our process, i.e., before any training at all.289

Because the dynamics models are inherently stable, these random networks lead to290

stable dynamics with interesting behaviors, illustrated in Figure 1.3. Specifically, we291

let f̂ be defined by a fully connected network and V be an ICNN. Both networks have292

two hidden layers with 100 nodes each, and are initialized by the Kaiming uniform293

initialization [18]). The U weights in the ICNN are further subject to a softplus unit294

to make them positive.295

1.4.2 n-link pendulum296

Next we look at the ability of our approach to model a physically-based dynamical297

system, specifically the n-link pendulum. A damped, rigid n-link pendulum’s state298

x can be described by the angular position θi and angular velocity θi of each link i.299

As before f̂ and the Lyapunov function V have two hidden layers of 100 nodes, with300

properties described in Section 1.3.1. Models are trained with pairs of data (x, ẋ)301

produced by the symbolic algebra solver sympy, using simulation code adapted from302

[55].303

12

March 9, 2023
DRAFT

March 8, 2023
DRAFT

0 200 400 600 800 1,000
102

103

104

105

Timestamp

E
rr
or

Error at each time
for 8-link pendulums

Simple
Stable

1 2 4 6 8

Number of links n

Average error over 999 timesteps
for n-link pendulums

Figure 1.5: Error in predicting θ, θ̇ in 8-link pendulum at each timestep (left); and
average error over 999 timesteps as the number of links in the pendulum increases
(right).

In Figure 1.4, we compare the simulated dynamics with the learned dynamics in the304

case of a simple damped pendulum (i.e. with n = 1), showing both the vector field305

and a single simulated trajectory, and draw a contour plot of the learned Lyapunov306

function. As seen, the system is able to learn dynamics that can accurately predict307

motion of the system even over long time periods.308

We also evaluate the learned dynamics quantitatively varying n and the time horizon309

of simulation. Figure 1.5 presents the total error over time for the 8-link pendulum,310

and the average cumulative error over 1000 time steps for different values of n. While311

both the simple and our stable models show increasing mean error at the start of312

the trajectory, our model is able to capture the contraction in the physical system313

(implied by conservation of energy) and in fact exhibits decreasing error towards314

the end of the simulation (the true and simulated dynamics are both stable). In315

comparison, the error in the simple model increases.316

1.4.3 Video Texture Generation317

Finally, We apply our technique to stable video texture generation, using a Variational318

Auto-Encoder (VAE) [23] to learn an encoding for images, and our stable network to319

13

March 9, 2023
DRAFT

March 8, 2023
DRAFT

e(yt)

µt

log σt
f̂(zt)

V (zt)

zt ∈ N (µt, σ
2
t)

zt+1 ← zt + f(zt)
d(zt)

d(zt+1)

KL(N (µt, σ
2
t)∥N (0, I))

∥d(zt)− yt∥22

∥d(zt+1)− yt+1∥22

Figure 1.6: Structure of our video texture generation network. The encoder e and
decoder d form a Variational Autoencoder, and the stable dynamics model f is trained
together with the decoder to predict the next frame in the video texture.

learn a dynamics model in encoding-space. Given a sequence of frames (y0, y1, . . .),320

we feed the network the frame at time t and train it to reconstruct the frames at321

time t and t+ 1. Specifically, we consider a VAE defined by the encoder e : Y → R2n
322

giving mean and variance µ, log σ2
t = e(yt), latent state zt ∈ Rn ∼ N (µt, σ

2
t), and323

decoder d : Rn → Y , yt ≈ d(zt). We train the network to minimize both the standard324

VAE loss (reconstruction error plus a KL divergence term), but also minimize the325

reconstruction loss of a next predicted state. We model the evolution of the latent326

dynamics at zt+1 ≈ f(zt), or more precisely yt+1 ≈ d(f(zt)). In other words, as327

illustrated in Figure 1.6, we train the full system to minimize328

minimize
e,d,f̂ ,V

T−1∑
t=1

(
KL(N (µt, σ

2
t I∥N (0, I)) + Ez

[
∥d(zt)− yt∥22 + ∥d(f(zt))− yt+1∥22

])
(1.21)

329

We train the model on pairs of successive frames sampled from videos. To generate330

video textures, we seed the dynamics model with the encoding of a single frame and331

numerically integrate the dynamics model to obtain a trajectory. The VAE decoder332

converts each step of the trajectory into a frame. In Figure 1.7, we present sample333

stable trajectories and frames produced by our network. For comparison, we also334

include an example trajectory and resulting frames when the dynamics are modelled335

without the stability constraint (i.e. letting f in the above loss be a generic neural336

14

March 9, 2023
DRAFT

March 8, 2023
DRAFT

−10 15

-2

18
Stable Model Run 1

0 25

0

20
Stable Model Run 2

-5 15

-10

8
Stable Model Run 3

−2× 1030 0

0

1.2× 1030
Naive Model

0

300

st
ep
s

Stable Frame Number
Model 0 10 20 30 40 50 100 150 200 250

Run 1

Run 2

Run 3
Naive
Model

Figure 1.7: Samples generated by our stable video texture networks, with associated
trajectories above. The true latent space is 320-dimensional; we project the trajectories
onto a two-dimensional plane for display. For comparison, we present the video texture
generated using an unconstrained neural network in place of our stable dynamics
model.

15

March 9, 2023
DRAFT

network). For the naive model, the dynamics quickly diverge and produce a static337

image, whereas for our approach, we are able to generate different (stable) trajectories338

that keep generating realistic images over long time horizons.339

1.5 Conclusion340

We proposed a method for learning stable non-linear dynamical systems defined by341

neural network architectures. The approach jointly learns a convex positive definite342

Lyapunov function along with dynamics constrained to be stable according to these343

dynamics everywhere in the state space. We show that these models can be integrated344

into other deep architectures such as VAEs, and learn complex latent space dynamics345

is a fully end-to-end manner. Although we have focused here on the autonomous346

(uncontrolled) setting, the method opens several directions for future work, such as347

integration into dynamical systems for control or reinforcement learning settings.348

Have stable systems as a “primitive” can be useful in a large number of contexts, and349

combining these stable systems with the representational power of deep networks350

offers a powerful tool in modeling and controlling dynamical systems.351

1.6 Adaptation to Stable Control and RL352

After the successes of our stable dynamics model, we attempted to extend it to also353

learn stable policies and value functions. The intuitive extension to this is to replace354

the dynamics model f̂ with fixed (known) dynamics f̃ and a learnable policy network355

π. That is, we train to minimize:356

ReLU
(
∇V (x)T f̃(x, π) + αV (x)

)
(1.22)357

given traces from simulated dynamics. We also transformed the dynamics so that358

the goal state was positioned at the origin, choosing suitable transformations for the359

dynamics and Lyapunov functions. As required by the approach, we attempted to360

train it from trajectory samples to minimize the error over one step.361

16

March 9, 2023
DRAFT

We were able to successfully learn stabilizing controllers for toy examples such as a362

simple damped pendulum and for the cartpole problem. Unfortunately, we were not363

able to learn a swing-up controller for either environment, or any type of controller364

for an Acrobot1 or more complex locomotion tasks. We observed that the training365

would consistently fail in the same way: the nominal dynamics function would diverge366

to the point of uselessness, followed by the learned Lyapunov function collapsing to a367

trivial function.368

This persisted despite any amount of regularization, hyperparameter tuning, and369

even across a variety of environments. Contemporary efforts in the literature were370

similarly unable to scale this approach to locomotion tasks. The consistent failure371

of this method suggested that an underlying principle was being violated, and that372

regularization was not able to address that. We eventually investigated how the373

difference in distributions between the data used to train the purportedly stable374

controller and the policy the controller was attempting to learn, which led us to the375

work in the next chapter.376

1A two-link pendulum with a single actuator in the middle joint.

17

March 9, 2023
DRAFT

18

March 9, 2023
DRAFT

Chapter 2377

The Pitfalls of Regularization in378

Off-Policy Temporal Difference379

Learning380

Temporal Difference (TD) learning is ubiquitous in reinforcement learning, where it is381

often combined with off-policy sampling and function approximation. Unfortunately382

learning with this combination (known as the deadly triad), exhibits instability and383

unbounded error. To account for this, modern RL methods often implicitly (or384

sometimes explicitly) assume that regularization is sufficient to mitigate the problem385

in practice; indeed, the standard deadly triad examples from the literature can386

be “fixed” via proper regularization. In this paper, we introduce a series of new387

counterexamples to show that the instability and unbounded error of TD methods388

is not solved by regularization. We demonstrate that, in the off-policy setting with389

linear function approximation, TD methods can fail to learn a non-trivial value390

function under any amount of regularization; we further show that regularization391

can induce divergence under common conditions; and we show that one of the most392

promising methods to mitigate this divergence (Emphatic TD algorithms) may also393

diverge under regularization. We further demonstrate such divergence when using394

19

March 9, 2023
DRAFT

neural networks as function approximators. Thus, we argue that regularization in TD395

methods needs to be reconsidered, given that it is insufficient to prevent divergence396

and may itself introduce instability. There needs to be much more care in the397

application of regularization to RL methods.398

From “The Pitfalls of Regularization in Off-Policy TD Learning” by Manek and399

Kolter (2022)400

20

March 9, 2023
DRAFT

2.1 Introduction401

Temporal Difference (TD) learning is a method for learning expected future-discounted402

quantities from Markov processes, using transition samples to iteratively improve403

estimates. This is most commonly used to estimate expected future-discounted404

rewards (the value function) in Reinforcement Learning (RL). Advances in RL allow405

us to use powerful function approximators, and also to use sampling strategies other406

than naively following the Markov process (MP). When TD, function approximation,407

and off-policy training are all combined, learned functions exhibit severe instability408

and divergence, as classically observed by Williams and Baird III [58] and Tsitsiklis409

and Van Roy [53]. This combination is known in the literature as the deadly triad [48,410

pg. 264], and while many contemporary variants of TD are designed to converge411

despite the instability, the quality of the solution at convergence may be arbitrarily412

poor.413

A common technique to avoid unbounded error is ℓ2 regularization [52], i.e. penalizing414

the squared norm of the weights in addition to the TD error. This is generally415

understood to bound the worst-case error in exchange for biasing the model and416

potentially increasing the error everywhere else. When used on three common417

examples of the deadly triad [24, 58, 48, pg.260], regularization appears to mitigate418

the worst aspects of the divergence in practice. Consequently, it has become an419

essential assumption made by many RL algorithms [8, 33, 50, 60, 63, 62, 27] and is420

seen as routine and innocuous.421

We argue that this perspective on regularization in off-policy TD is fundamentally422

mistaken. While regularization is indeed reasonably well-behaved and innocuous in423

classic fully-supervised contexts, the use of bootstrapping in TD means that even424

small amounts of model bias induced by regularization can cause divergence. This425

is an oft-ignored phenomenon in the literature, and so we introduce a series of new426

counterexamples (summarized in Table 2.1) to show how regularization can have coun-427

terintuitive and destructive effects in TD. We show that vacuous solutions and training428

instability are not solved by the use of regularization; that applying regularization can429

21

March 9, 2023
DRAFT

sometimes induce divergence and increase worst-case error; and that Emphatic TD430

algorithms—which are the most promising solution to this divergence—can themselves431

diverge when regularized. We finally also illustrate misbehaving regularization in the432

context of neural network value function approximation, demonstrating the general433

pitfalls of regularization possible in RL algorithms. Regularization needs to be treated434

cautiously in the context of RL, as it behaves differently than in supervised settings.435

Our counterexamples demonstrate these core ideas:436

TD learning off-policy can be unstable and/or have unbounded error even437

when it converges. Following well-established methods we show there is some438

off-policy distribution under which TD with linear value function approximation439

diverges and learns a model with unbounded error (even if it were able to converge440

to the TD fixed point). This concisely demonstrates key features of the training441

error: the error is small when the distribution is close to on-policy, but the error442

diverges around specific off-policy distributions. The intuition behind this, explained443

in Section 2.3, is that the off-policy1 TD update involves a projection operation that444

depends on the sampling distribution and can be arbitrarily far away from the true445

value. This basic fact has already been established by past work [58, 24], but our446

example is based upon a particular simple three-state MP, drawn in Figure 2.1a.447

Regularization cannot always mitigate off-policy training error. We next448

introduce regularization into our setting, and show how it changes the relationship449

between training error and off-policy training. As explained in Section 2.2, we penalize450

the ℓ2-norm of learned (linear) weights with some coefficient η; as η increases, the451

learned weights approach zero. However, in Example 1, we show that there exists452

an off-policy distribution such that for any η ≥ 0 < ∞, the regularized TD fixed453

point attains strictly higher approximation error than the zero solution (i.e., the454

infinitely regularized point). We call such examples vacuous. In other words, vacuous455

value functions never do better than guessing zero for all states, for any amount of456

1We consider a sampling distribution to be on-policy if it follows the stationary distribution of
the MP; we do not explicitly consider a separate policy in this paper.

22

March 9, 2023
DRAFT

regularization.457

We further analyze this vacuous example in the context of the algorithm in [62]. In458

this work, the authors assume the use of regularization to derive bounds on the learned459

error under off-policy sampling. Although these bounds are technically correct in the460

case of our counterexample, they are very loose, at about 2000 times the threshold of461

vacuity. This highlights the challenge of formally relying on regularization to bound462

model error.463

Small amounts of regularization can cause model divergence or large errors.464

There is a general implicit assumption in much ML literature that regularization465

monotonically shrinks learned weights. This intuition comes from classic fully-466

supervised machine learning where it typically holds. But because TD bootstraps467

value estimates (i.e. learns values using its own output), it is possible for small468

amounts of bias to be arbitrarily magnified. We dub this phenomenon “small-eta469

error” and illustrate it in Example 2. We relate this to the presence of negative470

eigenvalues in an intermediate step of the solution and show that, in some settings, the471

error of the TD solution may be relatively small when applied with no regularization472

but adding regularization causes the model to have worse error than the zero solution.473

One common solution to this problem is to lower-bound η to guarantee that regular-474

ization behaves monotonically. However, we further show that such a lower bound475

may occur after the point of vacuity: a model that is not vacuous becomes vacuous476

for any regularization parameter above this lower bound. We also show that it is not477

always possible to select a single η a priori, with examples of mutually-incompatible478

off-policy distributions where there is no η that achieves better than vacuous or479

nearly-vacuous results at different distributions.480

Emphatic-TD-based algorithms are vulnerable to instability from reg-481

ularization. Emphatic-TD [49] fundamentally solves the problem of training482

off-policy by resampling TD updates so they appear to be on-policy. This technique483

requires an emphasis model that decides how to scale each TD update, and learning484

23

March 9, 2023
DRAFT

March 8, 2023
DRAFT

s3

s1 s21⁄4
1⁄2

1⁄4

1⁄4

1⁄2
1⁄4

1⁄41⁄4

1⁄2

(a) Three-state MP.

1

4

1 1 2
1 1 2
1 1 2

 (2.1)

(b) Three-state MP.

Figure 2.1: Our three-state counterexample Markov Process. We use this to illustrate
how TD models can fail despite common mitigating strategies with linear function
approximation.

this has been the key challenge preventing widespread adoption of Emphatic-TD. A485

recent paper [63] proposed learning this emphasis model using “reversed” TD while486

simultaneously learning the value model using regular TD. The resultant algorithm487

is called COF-PAC, and employs regularization to ensure that the two TD models488

eventually converge.489

We show that regularization, while necessary, can be harmful for such models in490

Example 3. Specifically, we construct a model that converges to the correct solution491

without regularization but to an arbitrarily poor solution when regularized. The492

intuition behind this is that regularizing the emphasis model changes the effective493

distribution of the TD updates to the value model, which can cause the value model494

to have arbitrarily large error. We complete the example by showing that regularizing495

the value function separately does not restore performance.496

Regularization can cause model divergence in neural networks. So far497

most analysis of the deadly triad in the literature focuses on the linear case. We498

extend our example to a nine-state Markov chain (shown in Figure 2.8), and show how499

the previously identified problems persist into the neural network case in Example 4.500

We show two key similarities: first, models trained at certain off-policy distributions501

may be vacuous. Second, small amounts of regularization counterintuitively increase502

error. This illustrates Example 2 in the NN case.503

24

March 9, 2023
DRAFT

Example 1 There exist off-policy distributions under which TD learns a vacuous
model (one which—despite any amount of regularization—never does
better than guessing zeros).

Example 2 Small values of the regularization parameter η can make TD diverge
in models that otherwise converge. This is an unavoidable effect of
bootstrapping in TD, and setting a lower-bound to exclude this may
render models vacuous.

Example 3 Emphatic-TD-inspired algorithms are a promising way to reweigh samples
and mitigate the effects of training off-policy. But if this reweighing is
learned using TD, then using regularization can bias the emphasis model
and cause the value model itself to diverge.

Example 4 Training instability and increased error due to the deadly triad also occur
when neural networks are used. We construct an empirical example and
draw qualitative comparisons.

Table 2.1: Summary of theorems.

2.2 Preliminaries and Notation504

Consider the n-state Markov chain (S, P,R, γ), with state space S, state-dependent505

reward R : S → R, and discount factor γ ∈ [0, 1]. P ∈ Rn×n is the transition matrix,506

with Pij encoding the probability of moving from state i to j. We wish to estimate507

the value function V : S → R, defined as the expected discounted future reward of508

being in each state: V (s)=̇E [
∑∞

t=0 γ
tR(st)| s0 = s]. A key property is that it follows509

the Bellman equation:510

V = R + γPV (2.2)511

25

March 9, 2023
DRAFT

Using linear function approximation to learn V , we assume a matrix of feature-vectors

Φ ∈ Rn×k that is fixed, and a vector of parameters w ∈ Rk that is learned. The

Bellman equation is then:512

Φw = R + γ P Φw (2.3)513

When w is learned with TD, this equation is only valid if the TD updates are on-policy

(that is, they are distributed according to the steady-state probability of visiting each

state, written as π ∈ Rn). In the general case, where TD updates follow a (possibly)

different distribution µ ∈ Rn
0 , the TD solution is a fixed point of the Bellman operator

followed by a projection [24]:514

Φw = Πµ (R + γPΦw) (2.4)515

where the matrix Πµ = Φ(Φ⊤DΦ)
−1
Φ⊤D projects the Bellman backup onto the

column-space of Φ, reweighed by the diagonal matrix D = diag(µ). This yields the

closed-form solution:516

w = A−1⃗b (2.5)517

Where A = Φ⊤D(I − γP)Φ and b⃗ = Φ⊤DR. When this solution is subject to ℓ2518

regularization, some non-negative η is added to ensure the matrix being inverted is519

positive definite:520

w∗(η) = (A+ ηI)−1⃗b (2.6)521

As will be important later, we note that as η increases it drives w∗(η) towards zero.522

2.3 Our Counterexamples523

Under deadly triad conditions are present, TD may learn a value function with524

arbitrarily large error even if the true value function can be represented with low525

26

March 9, 2023
DRAFT

error. Consider the three-state MP in Figure 2.1a, which we instantiate with the526

value function V = [1, 2.2, 1.05]⊤ and discount factor γ = 0.99. The reward function527

is computed as R← (I − γP)V . We choose a basis Φ with small representation error528

∥ΠµV − V ∥ ≤ ϵ:529

Φ =

 1 0

0 −2.2
1/2(1.05 + ϵ) −1/2(1.05 + ϵ)

 where ϵ > 0 (2.7)530

We first consider the unregularized (η = 0) case, closely following the derivation531

in [24]. We wish to show there is some sampling distribution µ such that error in the532

learned value function is unbounded. To do this, we set µ = [0.56(1− p), 0.56p, 0.44],533

where p ∈ (0, 1). We set ϵ = 10−4 and find p around which A is ill-conditioned by534

solving det(A) = 0:535

p = 0.102631 ∨ p = 0.807255 (2.8)536

A−1 (and consequently the error) can be made arbitrarily large by selecting p close to537

these values, which completes the introductory example. Now we look at the behavior538

of TD under regularization, which is the main contribution of this chapter.539

2.3.1 Regularization cannot always mitigate off-policy train-540

ing error.541

There is a belief in the literature that regularization is a trade-off between reducing542

the blow-up of asymptotic errors and accurately learning the value function every-543

where else [8, 62]. However, this belief does not accurately capture the nature of544

regularization: we show that it is possible to learn models that never perform better545

than always guessing zero despite any amount of regularization. That is, the TD546

error at all η is at least as much as the error as η →∞. We call such models vacuous.547

Example 1. We use the same setting as in Section 2.3. When TD is regularized,548

27

March 9, 2023
DRAFT

there may exist some off-policy distribution at which TD learns a vacuous model. In549

notation:550

∥Φw∗(η)− V ∥ ≥ lim
η→∞
∥Φw∗(η)− V ∥ = ∥Φ0⃗− V ∥ = ∥V ∥ ∀η ∈ R+

0 (2.9)551

Details. We use the same setting as in Section 2.3. We observe that ŵ = [1,−1]⊤552

minimizes the least-squares error ∥Φŵ−V ∥, and further observe that a sufficient (but553

not necessary) condition for a solution to be vacuous is that ŵ⊤w∗(η) ≤ 0. Solving:554

0 = ŵ⊤w∗(η) =
ηp− 0.233η − 0.304p2 + 0.276p− 0.025

η2 + 1.44ηp+ 0.215η − 0.193p2 + 0.175p− 0.016
(2.10)555

=⇒ p ∈ {0.102636, . . .} (2.11)556

We verify that TD is vacuous at p = 0.102636 by computing the TD error at557

convergence:558

∥Φw∗(η)− V ∥2
∣∣
p=p̃

=
η2(0.148 + 0.744η + η2)

η2(0.132 + 0.727η + η2)
∥V ∥2 ≥ ∥V ∥2 (∀η ∈ R+) (2.12)559

Since the fraction term in Equation 2.12 is obviously improper, we can conclude560

that our example will always have at least ∥V ∥ error over all η, and is therefore561

vacuous.562

We note that the error is not defined at η = 0 because this corresponds to a model563

divergence similar to our introductory example. In practice, the TD fixed point will564

still converge to a vacuous solution:565

lim
η→0
∥Φw∗(η)− V ∥2 = 0.148

0.132
∥V ∥2 > ∥V ∥2 (2.13)566

Geometry of vacuous linear models.567

We begin by noting that we can easily find the solution ŵ that minimizes the least-568

squares error ∥Φŵ − V ∥. If we consider this solution as a vector (as drawn in569

28

March 9, 2023
DRAFT

Figure 2.2a), we can immediately see that there is an ℓ2-ball around ŵ corresponding570

to the set of w∗(η) with no more than ∥V ∥ error.571

Similarly, we can trace the trajectory that the TD solution w∗(η) takes as η is572

increased from 0 to ∞. We know that, as η →∞, w∗(η) is crushed to zero and so573

all trajectories must eventually terminate at the origin. When regularized models574

are not vacuous, the trajectory intersects the non-vacuous-error ball. We see this in575

trajectory 2, where the error briefly dips below ∥V ∥ in Figure 2.2b.576

Intuitively, a sufficient condition for a solution to be vacuous is that it remains in the577

half-space that is tangent to and excludes the non-vacuous parameter ball. This is578

equivalent to finding some distribution µ such that ŵ⊤w∗(η) ≤ 0 for all η, which we579

numerically solve to obtain the model in trajectory 1. From Figure 2.2a we can see580

the trajectory remains in the half-space, and from Figure 2.2b we can see that the581

error is never less than ∥V ∥. Trajectory 1 is a vacuous example.582

We observe that Example 1, because it remains entirely in the half-space ŵ⊤w∗(η) ≤ 0,583

could easily be generalized to other forms of regularization. We leave this for future584

work.585

This intuition does not persist in the neural network case (discussed in Section 2.3.4).586

In that case, the relationship between parameters and error does not admit a clean587

non-vacuous ball, but instead a deeply non-linear set of states. The resultant geometry588

does not admit a clean, intuitive, explanation.589

A second example.590

We present a second example where the error is stationary with respect to the591

regularization parameter. This is worse than Example 1 because we are able to show592

that the point the model converges to is independent of regularization. This example593

is the natural extension of that of Kolter [24].594

Details. We use the same setting as in Section 2.3, except the value function is V =595

29

March 9, 2023
DRAFT

March 8, 2023
DRAFT

0

ŵ

(1)

(2)

(3)

(a) As η increases, w∗(η) traces different trajectories at different µ. ŵ
minimizes the error, and we shade the area with TD error less than ∥V ∥.

March 8, 2023
DRAFT

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101 102
10−1

100

101

102

∥V ∥

ϵ

(1)

(2)

(3)

Regularization parameter η

E
rr
or

at
co
n
ve
rg
en
ce

(b) We plot the error curves corresponding to the three w∗(η) trajectories,
along with ∥V ∥. Trajectory 1 is vacuous because the error is at least ∥V ∥
for all η.

Figure 2.2: Plotting the trajectory of the parameters on above and the errors below,
we show how our counterexample 1 is never better than ∥V ∥ because it remains
in half-space where ŵ⊤w∗(η) ≤ 0. For comparison, we show trajectory 2 that is
improved by regularization, and 3, which exhibits small-η errors. (The trajectories
are distorted, so the errors in the two plots are not directly comparable.)

30

March 9, 2023
DRAFT

March 8, 2023
DRAFT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

η →∞

η = 0

p
=

0.
71
5

p in sampling distribution µ = [p/2, p/2, 1− p]

T
D

er
ro
r

Figure 2.3: We plot TD error against p for our three-state MP with ϵ = 10−4. This
shape is similar to that in [24]. There is a minima close to π (p ≈ 0.5), and an
asymptote at the singularity (p ≈ 0.715). At different levels of regularization the
error function moves between the unregularized case (η = 0) and the limiting case
(η →∞), as analyzed in Section 2.3.1. We show that there is some p at which the
error is never below the η →∞ line.

31

March 9, 2023
DRAFT

[1, 1, 1.05]⊤ and basis Φ selected to have small representation error ∥ΠDV − V ∥ ≤ ϵ:596

Φ =

 1 0

0 −1
1/2(1.05 + ϵ) −1/2(1.05 + ϵ)

 where ϵ > 0 (2.14)597

. We set ϵ = 10−4 and write down w∗(η) in terms of g, a scalar function of η and p:598

w∗(η) = (A+ ηI)−1⃗b =
(2η + p)(0.925− 1.29p)

100η2 + 47.4pη + 1.85η − 1.30p2 + 0.927p
·
[

1

−1

]
(2.15)599

≡ g(p, η)

[
1

−1

]
(2.16)600

When g(p, η) ≤ 0, the TD solution is vacuous. We show that directly:601

∥Φw∗(η)− V ∥ = ∥g(p, η)Φ ∗ [1,−1]⊤ − Φ ∗ [1,−1]⊤∥ = ∥g(η)− 1∥ · ∥V ∥ (2.17)602

When g(p, η) ≤ 0, then ∥g(p, η) − 1∥ ≥ 1 for all η and the TD solution is vacuous.603

We find such a solution by noting the numerator has two roots in p, one of which604

corresponds to a vacuous solution: g(0.715083, η) = 0 (∀η), and this completes the605

example!606

In this setting, when TD updates follow the sampling distribution p ≈ 0.715083, the607

error of the model at convergence is always ∥V ∥ regardless of regularization. Our608

example converges to the same vacuous value regardless η.609

We present this graphically in Figure 2.3, where we plot the relationship between the610

off-policy distribution and the error at the TD fixed point. We plot the error with no611

regularization (η = 0) and the limiting error (η →∞).612

We can see that the TD error intersects the η →∞ line immediately before and after613

the singularity. Our counterexample corresponds to the second root (that is, the614

intersection point at higher p.) This is because that corresponds to the stationary615

point between the asymptote that is crushed and the error on the right that increases.616

32

March 9, 2023
DRAFT

If our simpler derivation proved unsatisfying, we can also derive this counterexample617

using this fact:618

0 =
d

dη
ŵ⊤w∗(η) =

p(p− 0.715083)

p(p− 0.714303)2
(2.18)619

From this, we can easily see that the counterexample is at p = 0.715083. And this620

completes the example! We have discovered some p at which the TD error is always621

at least ∥V ∥, regardless of regularization, and so our example learns a vacuous value622

function.623

Breaking the Deadly Triad and our counterexample.624

In light of our example we examine the work of [62] in which the authors derive a625

bound for the regularized TD error under a novel double-projection update rule. We626

apply our example to their bound and show that their method may produce loose627

bounds on TD solutions, and so doesn’t quite break the deadly triad:628

∥Φw∗(η)− V ∥ ≤ 1

ξ

(
σmax(Φ)

2

σmin(Φ)4σmin(D)2.5
· ∥V ∥η + ∥ΠDV − V ∥

)
(2.19)629

for ξ ∈ [0, 1], where σmax and σmin denote the largest and smallest singular value

respectively. Theorem 2 from [62] bounds η, and therefore also b:630

η > arg inf
η
∥Φ− C0∥ = 0.177/(1− ξ)2 (2.20)631

inf
ξ
b(ξ, η) = 5.20× 104 ≈ 2000 ∗ ∥V ∥ (2.21)632

Their method bounds the error in our example by 2000 ∗ ∥V ∥, which is tremendously633

loose.634

33

March 9, 2023
DRAFT

Analyzing the second example in 2.3.1; starting from Equation 2.19:635

∥Φw∗(η)− V ∥ ≤ b(η, ξ) =
1

ξ

(
σmax(Φ)

2

σmin(Φ)4σmin(D)2.5
· ∥V ∥η + ∥ΠDV − V ∥

)
(2.22)636

= 1/ξ · (38.0η + 8.07× 10−5) (2.23)637

for ξ ∈ [0, 1], where σmax and σmin denote the largest and smallest singular value

respectively. Theorem 2 from [62] bounds η, and therefore also b:638

η > arg inf
η
∥Φ− C0∥ = 0.367(6.86− 13.7ξ + 6.86ξ2)

−1
(2.24)639

inf
ξ
b(ξ, η) = 13.8 = 7.86 ∗ ∥V ∥ (2.25)640

Under our example, their method bounds the error at no more than 7.86∗∥V ∥, which641

is a very loose bound that permits vacuous solutions. This illustrates the risk of642

trying to regularize away singularities, particularly in theoretical work.643

Investigating the cause of the loose bounds reveals that the presence of σmin(D)2.5644

in 2.19 is largely responsible. As D is a diagonal matrix encoding the sampling645

distribution, σmin(D) is the smallest sampling rate of any state, and so the bound646

must be at least η
ξn2.5 for any perfectly representable n-state MP. Unfortunately, this647

appears to be fundamental limit caused by finding a linear bound to an error that648

scales non-linearly, and following their derivation in the appendix does not readily649

admit a way to improve this.650

2.3.2 Small amounts of regularization can cause large in-651

creases in training error.652

There is a general assumption in the literature that ℓ2 regularization monotonically653

shrinks the learned weights. While this is true in classification, regression, and other654

non-bootstrapping contexts, this is not true in TD. Because TD bootstraps values, it655

is possible for model bias to be arbitrarily magnified.656

This can be understood in terms of the eigenvalues of the matrix A in Equation 2.6.657

34

March 9, 2023
DRAFT

By increasing values along the diagonal, ℓ2 regularization increases eigenvalues of658

the matrix (A+ ηI) to ensure it is positive definite. Under off-policy distributions,659

it is possible for A to have eigenvalues that are negative or zero. This implies that660

there are η for which det(A+ ηI) = 0, and selecting η close to these values allows us661

to achieve arbitrarily high error. We show one such case in Example 2. This is not662

merely theoretical–we demonstrate this in the neural network case in Section 2.3.4.663

Example 2. When TD is regularized, the model may diverge around (typically664

small) values of η. Lower-bounding η, a common mitigation, can make well-behaved665

models vacuous. It is not always possible to select a single value of η that makes666

models vacuous at different sampling distributions.667

Details. Using our three-state example, we set µ = [0.05, 0.05, 0.9] and solve for668

det(A+ ηI) = 0:669

0 = det(A+ ηI) = η2 + 5.45× 10−2η − 7.47× 10−3 =⇒ η = 0.0634 (2.26)670

As in the introductory example, the error can be made arbitrarily large by setting671

η ≈ 0.0634.672

The same analysis is repeated for our second example in 2.3.1. We set p = 0.9 and673

solve for det(A+ ηI) = 0:674

Details.

0 = 100η2 + 47.4pη + 1.85η − 1.30p2 + 0.927p (2.27)675

η = 0.00482577 ∨ η = −0.45 (2.28)676

Note that the denominator of g(p, η) is proportional to det(A+ ηI), and so g(0.9, η)–677

and the error at the TD fixed point–can be made arbitrarily large by selecting η close678

to 4.83× 10−3. As this is the only positive root, the model does not diverge at other679

values.680

This small-η divergence effect can appear in several ways, illustrated in Figure 2.4a.681

35

March 9, 2023
DRAFT

Typically, this appears as one or more points at which TD error diverges before the682

region at which regularization reduces the model error below ∥V ∥. The first and683

second plot in Figure 2.4a show two such cases, where the error increases sharply at684

two and one points respectively.685

In the literature, it is commonly assumed that A is “nearly” positive definite, where686

only a few eigenvalues are non-positive, and those are close to zero. This gives rise to687

the common mitigation of setting a lower-bound η0 such that (A + ηI) is positive688

definite for η > η0. This may render an otherwise well-behaved model vacuous. The689

third plot in Figure 2.4a illustrates this: the model is not vacuous when unregularized,690

but is vacuous in the domain η > 10−2 where divergence is prohibited.691

A common practice in the literature is to set η before training, without regard for692

the sampling distribution. This is ill advised, as the value may be under- or over-693

regularizing depending on the sampling distribution. One such example is illustrated694

in Figure 2.4b, where selecting an η that minimizes the error for one distribution695

will lead to vacuous or nearly-vacuous results in the other two. A second example in696

Figure 2.2b has no single η for which trajectories 2 and 3 are both non-vacuous. This697

is especially relevant as regularization is commonly used to permit distribution drift698

during training, as discussed in Section 2.4. If the training distribution changes while699

η is fixed, then algorithms that can be proven to converge to good solutions under700

some original distribution may converge to poor solutions as the distribution drifts.701

2.3.3 Emphatic approaches and our counterexample702

Emphatic-TD eliminates instability from off-policy sampling by reweighing incoming703

data (via an importance function) so it appears to be on-policy. There is considerable704

interest in making this more practical, especially by learning the importance and705

value models simultaneously. A leading example of this work is COF-PAC [63],706

which uses ℓ2-regularized versions of GTD2 [50] to learn both the value and emphasis707

models. The authors rely on regularization, particularly because the target policy708

changes during learning. This makes COF-PAC vulnerable to regularization-caused709

36

March 9, 2023
DRAFT

March 8, 2023
DRAFT

∥V ∥

∥V ∥

T
D

er
ro
r

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

∥V ∥

Regularization parameter η

(a) Different MPs at off-policy distributions selected to show small-η
error. The error may increase at multiple η, and may even occur after
the optimal η.

March 8, 2023
DRAFT

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

∥V ∥

ϵ

Regularization parameter η

T
D

er
ro
r

(b) Three off-policy distributions with mutually incompatible η. There is
no η at which all models are not vacuous or nearly vacuous.

Figure 2.4: We plot TD error against η to show small-η errors (above) and mutually-
incompatible η (below). We also plot the error at the limit of vacuity ∥V ∥ and the
representation error ϵ.

37

March 9, 2023
DRAFT

error. We illustrate this with Example 3 in which COF-PAC learns correctly when710

unregularized, but has large error when regularized.711

Example 3. COF-PAC may learn the value function with low error when unregular-712

ized, but with arbitrarily high error when regularized.713

Details. Conceptually, COF-PAC maintains two separate models that are each up-714

dated by TD: the emphasis and the value models. This emphasis model is used to715

reweigh TD updates to the value function so they appear to come from the on-policy716

distribution. Our strategy is to first show how regularization biases the emphasis717

model, and then how this bias causes the value model to diverge. We begin with our718

three-state MP, noting its on-policy distribution is π = [.25 .25, .5]. We wish to learn719

the values using COF-PAC while sampling off-policy at µ = [.2 .2 .6].720

Now we introduce a key conceptual tool: υ(ηm), which is the effective distribution721

seen by the TD-updates, influenced by the emphasis regularization parameter ηm.722

Unregularized, COF-PAC is able to resample off-policy updates to the on-policy723

distribution: υ(0) ≡ π. If the model is regularized, then the effective distribution724

moves away from π. Figure 2.5a illustrates the distance between υ(ηm) and π as the725

regularization parameter increases.726

We can use the effective distribution to compute the error in the value model. Plotting727

the relationship between the value function error and ηm in Figure 2.5b, we can see728

the value function has asymptotic error around ηm = 2 × 10−4. This shows how729

COF-PAC may diverge with specific regularization.730

COF-PAC also allows for the value function to be separately regularized with param-731

eter ηv. We show the effect of this in Figure 2.5c, where the value function never does732

much better than ∥V ∥ making it (nearly) vacuous. We can conclude that regularizing733

the emphasis model may cause the value model to diverge, and this cannot be fixed734

by regularizing the value function separately.735

Mathematical details of example. We use an MP with the same transition736

function as in Figure 2.1a, with separate bases Φm and Φv for the emphasis and value737

38

March 9, 2023
DRAFT

March 8, 2023
DRAFT

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1
0

0.4

2
·1
0
−
4

Emphasis ηm

∥υ
(η
)
−

π
∥

Emphasis Model Error

(a) ηm distorts the emphasis model.

March 8, 2023
DRAFT

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

2
·1
0
−
4

Emphasis ηm

∥Φ
v
w

∗ v
−
V
∥

Value Model Error

(b) ηm distorts value.

March 8, 2023
DRAFT

10−8 10−7 10−6 10−5 10−4 10−3

∥V ∥

ϵ Value ηv

∥Φ
v
w

∗ v
−
V
∥

Value Model Error

(c) ηv can’t fix this.

Figure 2.5: Regularization on the emphasis model (ηm) distorts the effective dis-
tribution (Figure 2.5a). Specific values of ηm induce the value function to diverge
(Figure 2.5b). The resultant value function is vacuous (Figure 2.5c). Under COF-PAC,
regularization can greatly increase model error.

39

March 9, 2023
DRAFT

March 8, 2023
DRAFT

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

η = 0

η = 2 · 10−4

With Regularization

distrib. param. p

d
is
tr
ib
.
er
r.
∥υ

(η
)
−

π
∥

Emphasis Model Error

(a) distribution is [p/2, p/2, (1− p)]

March 8, 2023
DRAFT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
η = 0

υ
(0
)

υ
(2
·1
0−

4
)

With Regularization

distrib. param. q

va
lu
e
er
r.
∥Φ

v
w

∗ v
−

V
∥

Value Model Error

(b) distribution is [(1− q)/2, q/2, 0.5]

Figure 2.6: Regularization distorts the emphasis model (left), which induces the value
function (right) to move to a singularity. Unregularized models are shown in red,
regularized models in blue. Regularization can interact with emphasis models to
significantly worsen learned value functions.

40

March 9, 2023
DRAFT

stages respectively. We assume that our interest in all states is uniformly i = 1.738

We begin by setting the off-policy sampling distribution of µ = [.2 .2 .6], used as the739

diagonal matrix Dµ = diag(µ). Thanks to the simple structure of our example, we740

know the emphasis is m = i
1−γ
· πD−1

µ ∝ (5/4, 5/4, 5/6). We select a basis that allows741

us to represent this emphasis:742

Φm =

 5/4 0

0 −1/100 · 5/4
5/12 −1/100 · 5/12

 (2.29)743

We deliberately choose Φm to have a poor condition number for reasons that will

become apparent later. We can represent c · (5/4, 5/4, 5/6) exactly for any constant c:744

Φm · (1,−100) · c = c · (5/4, 5/4, 5/6) (2.30)745

Using Equation 5 from [63], we define the matrices:746

Cm = Φ⊤
mDµΦm =

[
0.417 −1.04× 10−3

−1.04× 10−3 4.17× 10−5

]
(2.31)747

Am = Φ⊤
m(I − γP⊤)DµΦm =

[
0.159 1.536× 10−3

1.536× 10−3 1.59× 10−5

]
(2.32)748

And we apply these to the formulation in Lemma 3 and compute the emphasis weights

as a function of the regularization wm : R+
0 → R+:749

w∗
m(η) = (A⊤

mC
−1
m Am + ηI)−1A⊤

mC
−1
m Φ⊤

mDi (2.33)750

We can then use this to compute the new apparent distribution υ, which is the751

effective distribution that the updates to the value model see, and it is equal to the752

41

March 9, 2023
DRAFT

emphasis multiplied by the off-policy distribution.753

υ(η) = Φm · w∗
m(η) ·D (2.34)754

Without any regularization, this should be exactly equal to the on-policy distribution.755

υ(0) = [0.25 0.25 0.5] ≡ π (2.35)756

When we compute this value with a small amount of regularization η = 2× 10−4, we

observe that the apparent distribution drifts far away from the on-policy distribution.757

υ(2× 10−4) = [0.44 0.06 0.5] (2.36)758

The proximate cause of this is the poor condition number of C, caused by the 1
100

759

scale factor applied to the second column of Φm. This allows η to affect different760

columns by different (relative) amounts in the definition of w∗(η), which pushes it761

away from the symmetric solution. See this error shift in Figure 2.6a.762

So far, we have shown how regularization causes a shift in the apparent distribution763

that the TD updates see. To complete the example we show how this moves the764

fixed point of the value function away from a stable point into an asymptote where it765

may grow without bounds. This second phase follows in the same pattern as the first766

phase, starting with the desired value function: V = [1 2.69 1.05] and a basis that767

can almost exactly represent the value function:768

Φv =

 1 0

0 −2.69
1/2(ϵ+ 1.05) −1/2(ϵ+ 1.05)

 (2.37)769

ϵ = 2× 10−4 (2.38)770

42

March 9, 2023
DRAFT

We use this basis to compute the state-rewards R = (I − γP)V = [−0.43 1.26 − 0.38]

and define the matrices Av and Cv and the solution w∗
v(η):771

Av = Φ⊤
v (I − γP⊤)DΦv (2.39)772

Cv = Φ⊤
v DΦv (2.40)773

w∗
v(η) = (A⊤

v C
−1
v Av + ηI)−1A⊤

v C
−1
v Φ⊤

v DR (2.41)774

We can use this solution to compute the error between the value function and the true

values, ∥Φvwv(η)− V ∥. First, under the corrected distribution without regularization

υ(0) ≡ π:775

Φvw
∗
v(0)|D=diag(υ(0)) = 0.000865 (2.42)776

Then, with regularization in the value function (but not in the emphasis function):777

Φvw
∗
v(2× 10−4)|D=diag(υ(0)) = 0.0162 (2.43)778

Then, under the apparent distribution υ induced by use of regularization in the

emphasis function, without and with regularization:779

Φvw
∗
v(0)|D=diag(υ(2×10−4)) = 418.601 (2.44)780

Φvw
∗
v(2× 10−4)|D=diag(υ(2×10−4)) = 3.00 (2.45)781

It is immediately obvious that the use of regularization in the emphasis function782

causes the learned value function to be incorrect. Including a regularizing term in the783

value estimate is not sufficient to fix the value function. This completes the example.784

The non-expansion condition and our counterexample.785

COF-PAC makes the strong assumption that Kolter’s non-expansion condition [24,786

eqn. 10] holds in both the emphasis and value models [63, asm. 4]. This is itself787

a very strong condition because it inherently assumes that both the emphasis and788

43

March 9, 2023
DRAFT

March 8, 2023
DRAFT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.7: The non-expansion condition holds in the shaded region of each graph.
These correspond to Figure 2.3, Figure 2.6a, and Figure 2.6b respectively.

value models are not subject to runaway TD [63, asm. 4]. Specifically, they make789

the strong assumption that this condition [24, eqn. 10] holds in the emphasis model790

at µ and value model at υ. This condition selects a convex subset of distributions791

under which one-step transition followed by projection onto Φ is non-expansive. We792

illustrate these regions in Figure 2.7. Even in the one-dimensional parameterization793

shown, this condition only holds in a small sub-region of the space and therefore794

appears to be a very strong condition. Empirically determining if such a condition795

holds (or training models to enforce it) may be possible with TD-DO [24, sec 4.1],796

but it is not clear how that method interacts with regularization.797

44

March 9, 2023
DRAFT

March 8, 2023
DRAFT

s3,1

s1,1 s2,1
1⁄4

1⁄2

1⁄4

1⁄2

1⁄41⁄4
s2,1

s2,2

s2,3

e⁄3

e⁄3

e⁄3

Figure 2.8: Our three-state counter-example MP is extended to nine states to illustrate
how the deadly triad problem could manifest in multi-layer neural networks. The
self-loop in the original example is replaced with a clique with uniform transitions
except as labelled with the original edge weight e.

1

12



1 1 1 3 6
4 4 4
4 4 4
3 1 1 1 6

4 4 4
4 4 4

3 3 2 2 2
4 4 4
4 4 4


(a) Transition function of the MDP.

1

2



1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1


(b) Observation function of the MDP.

Figure 2.9: Our three-state counterexample Markov Process. We use this to illustrate
how TD models can fail despite common mitigating strategies with linear function
approximation.

45

March 9, 2023
DRAFT

2.3.4 Applied to multi-layer networks798

We use a 9-state variant of our example to study the deadly triad in multi-layer neural799

networks (NNs). The MDP and its transition function are depicted in Figure 2.9; we800

have transformed the original MDP by replacing each self-loop with two additional801

states, forming a clique with the original state. We also define a deterministic802

observation function o : S → B6. where each state is encoded as the concatenation of803

the one-hot vector of its subscripts. The value function is assigned pseudo-randomly804

in range [−1, 1], and a consistent reward function is assigned. We select the family805

of sampling distributions µ ∝ [4p, 1p, 1p, 4p, 1p, 1p, 8(1− p), 4(1− p), 4(1− p)],806

where the on-policy distribution is at p = 0.5.807

We train a simple two-layer neural network with 3 neurons in the hidden layer. The808

value function is assigned pseudo-randomly in range [−1, 1].809

Example 4. Vacuous models and small-η error also occur in neural network condi-810

tions.811

Details. We train 100 models using simple semi-gradient TD updates under a fixed812

learning rate. We plot the mean and the 10th–90th percentile range in Figure 2.10a,813

with and without regularization. TD is known to exhibit high variance, and regular-814

ization is the traditional remedy for that. We corroborate this by noting that the815

performance of the unregularized model varies widely, but regularization leads to816

similar performance across initializations at the cost of increased error.817

First, we show that vacuous models may exist in the neural network case. In818

Figure 2.10a, note how there are some off-policy distributions under which both the819

regularized and unregularized models perform worse than the threshold of vacuity.820

We can numerically verify that vacuous models exist. Second, we show the small-η821

error problem in the neural network case in Figure 2.10b, where we plot the TD822

error against η at a fixed off-policy distribution. We observe that around η ≈ 10−3
823

the TD Error unexpectedly increases before decreasing, which clearly illustrates this824

phenomenon.825

46

March 9, 2023
DRAFT

We wish to learn the model with a two-layer network with k < n nodes in the inner826

layer. We define the network as f(o(si,j)) = tan−1(o(si,j) ∗ ω1) ∗ ω2. The parameters827

ω1 ∈ R6×k, ω2 ∈ Rk×1 are trained to convergence using simple TD updates with828

semi-gradient updates, a fixed learning rate, and without a target network.829

In addition to the example in Figure 2.10b, we present an additional example in830

Figure 2.11. The same Markov process, at a different off-policy distribution, attains831

a curve where the non-vacuous region lies before the divergent region, similar to832

the second row in Figure 2.4a. An added observation is that these two graphs are833

mutually incompatible – there is no fixed η that can simultaneously do better than834

vacuity in both, which promotes the idea of testing multiple regularization parameters835

or using an adaptive regularization scheme.836

2.3.5 Over-parameterization does not solve this problem837

Baird’s counterexample [58] shows how, in the linear case, that off-policy divergence838

can also happen with over-parameterization, as long as some amount of function839

approximation occurs. It is not obvious that this conclusion persists in the neural840

network case, so we include an additional example showing that the parameterization841

doesn’t resolve small-η divergence.842

In Figure 2.12 we plot models with 3 to 13 nodes in the hidden layer. For reference,843

the MDP has 9 states, so some models under-parameterize and some models over-844

parameterize. We observe that, in the low-regularization regime, increasing the845

number of parameters improves the error slightly. However, increasing the number846

of parameters in the hidden layer does not change the behavior in the the small-η847

divergence region.848

These qualitative links show a clear connection between the neural network case849

and the linear case, and highlights the importance of correctly handling off-policy850

sampling.851

47

March 9, 2023
DRAFT

March 8, 2023
DRAFT

0 0.2 0.4 0.6 0.8
10−2

10−1

100

101

∥V ∥2

Distribution parameter p

unregularized
regularized

(a) Mean and 10th–90th percentile errors of 100 NN value models trained
to convergence.

March 8, 2023
DRAFT

10−5 10−4 10−3 10−2 10−1 100
2

2.5

3

3.5

4

Regularization parameter η

(b) The relationship between error and η at the off-policy distribution
p = 0.31.

Figure 2.10: We illustrate how regularization interacts with NN value functions,
showing that the problems identified in this chapter persist in the NN case.

48

March 9, 2023
DRAFT

2.4 Related Work852

Three examples of the deadly triad are common in the literature: the classic853

Tsitsiklis and Van Roy (w, 2w) example [48, p. 260], Kolter’s example [24], and854

Baird’s counterexample which shows how training instability can exist despite over-855

parameterization [58].856

ℓ2 regularization is common when proving that an algorithm converges under a857

changing sampling policy. This is seen in GTD (analyzed in [60]), GTD2 [50], RO-858

TD [33], and COF-PAC [63]. This assumption may also be used to ensure convergence859

when training with a target network [62]. Despite the prevalence of regularization, the860

induced bias from using it is not well studied. It is often dismissed as a mere technical861

assumption, as in [8]. We contradict that: using regularization for convergence proofs862

may induce catastrophic bias. By showing concrete examples, this work hopes to863

inspire further investigation into regularization-induced bias in the same vein as [60].864

Alternatives to regularization and TD We focus on ℓ2 regularization in this865

chapter, which penalizes the ℓ2-norm of the learned weights; it is also possible to866

use ℓ1 regularization with a proximal operator/saddle point formulation as in [33],867

or any convex regularization term under a fixed target policy [60]. Instead of868

directly regularizing the weights, COP-TD uses a discounted update [13]. DisCor [25]869

propagates bounds on Q-value estimates to quickly converge TD learning in the870

face of large bootstrapping error; it is not clear if DisCor can overcome off-policy871

sampling. A separate primal-dual saddle point method has also been adapted to ℓ2872

regularization [9] and is known to converge under deadly triad conditions, and recent873

work [56] has derived error bounds with improved scaling properties in the linear874

setting, offering a promising line of research.875

Emphatic-TD [49] fixes the fundamental problem in off-policy TD by reweighing876

updates so they appear on-policy. The core idea underlying these techniques is to877

estimate the “follow-on trace” for each state, the (weighted, λ- and γ−discounted)878

probability mass of all states whose value estimates it influences. This trace is then879

49

March 9, 2023
DRAFT

used to estimate the emphasis, which is the reweighing factor for each update. While880

this family of methods is provably optimal in expectation, it is subject to tremendous881

variance in theory and practice, especially when the importance is estimated using882

Monte-Carlo sampling.2 In practice, these methods learn the follow-on trace using883

TD [19, 63] or similar [17], which makes them vulnerable to bias induced by the use884

of regularization.885

2.5 Relationship to modern RL algorithms886

It is still not obvious how strongly this instability affects modern RL algorithms,887

which are also sensitive to a variety of other failure modes. Unlike our analysis,888

the sampling distribution changes during training, and regularization mechanisms889

are more complex than simple ℓ2 penalities. The exact relationship between the890

instabilities we study and RL algorithms is an open problem, but we offer two pieces891

of indirect evidence suggesting there is a link.892

First, in the offline/batch RL literature, it is well-known that online RL algorithms893

naively applied can catastrophically fail if the learned policy is not consistent with894

the data distribution. This is known as the distribution shift problem, [31, p. 26] and895

offline RL algorithms are generally constructed to explicitly address this. Second,896

when using experience replay buffers in online RL algorithms, policy quality generally897

improves when older transitions are more quickly evicted [10]. However, there are898

multiple factors at work here, and it is not possible to separate out the instability899

from off-policy sampling from the remaining factors.900

2.6 Conclusion901

There is a tremendous focus in the RL literature on proving convergence of novel902

algorithms, but not on the error at convergence. Papers like [62] are laudable903

2Sutton and Barto’s textbook [48] says about Emphatic-TD that “it is nigh impossible to get
consistent results in computational experiments.” (when applied to Baird’s example).

50

March 9, 2023
DRAFT

because they provide error bounds; even if the current bounds are loose, future904

work will no doubt tighten them. In this work, we show that the popular technique905

of ℓ2 regularization does not always prevent singularities and could even introduce906

catastrophic divergence. We show this with a new counterexample that elegantly907

illustrates the problems with learning off-policy and how it persists into the NN case.908

Even though regularization can catastrophically fail in the ways we illustrate, it909

remains a reasonable method that may offer a fair tradeoff—as long as we are careful910

to check that we are not running afoul of the failure modes we explain here. It may be911

possible to design an adaptive regularization scheme that can avoid these pathologies.912

For now, testing the model performance over a range of regularization parameters913

(spanning several orders of magnitude) is the best option we have to detect such914

pathological behavior.915

Emphatic-TD is perhaps the most promising area of research for mitigating off-policy916

TD-learning. The key problem preventing its widespread adoption is the difficulty917

in estimating the emphasis function, but future work in this area may be able to918

overcome this. Our example shows the risk of relying on regularization in practical919

implementations of such methods. It is absolutely critical that Emphatic algorithms920

correctly manage regularization to avoid the risks that we highlight here.921

51

March 9, 2023
DRAFT

March 8, 2023
DRAFT

10−5 10−4 10−3 10−2 10−1 100
1

2

3

4

Regularization parameter η

(a) p = 0.31 (From Figure 2.10b)

March 8, 2023
DRAFT

10−5 10−4 10−3 10−2 10−1 100
1

2

3

4

Regularization parameter η

(b) p = 0.95

Figure 2.11: The relationship between error and η at different off-policy distributions,
showing mutually incompatible regularization behavior. The shaded range indicates
the region between the 5th and 95th percentile of 100 differently-initialized models.

52

March 9, 2023
DRAFT

March 8, 2023
DRAFT

10−5 10−4 10−3 10−2 10−1 100
1

2

3

4

Regularization parameter η

(a) p = 0.31

March 8, 2023
DRAFT

10−5 10−4 10−3 10−2 10−1 100
1

2

3

4

Regularization parameter η

(b) p = 0.95

Figure 2.12: The relationship between η and error with different amount of model
parameterization (with 3, 5, 7, 9, 11, 13, and 64 nodes in the hidden layer, corre-
sponding to darkening colors.)

53

March 9, 2023
DRAFT

54

March 9, 2023
DRAFT

Chapter 3922

Projected Off-Policy TD for Offline923

Reinforcement Learning924

A key problem in offline Reinforcement Learning (RL) is the mismatch between the925

dataset and the distribution over states and actions visited by the learned policy,926

called the distribution shift. This is typically addressed by constraining the learned927

policy to be close to the data generating policy, at the cost of performance of the928

learned policy. We propose Projected Off-Policy TD (POP-TD), a new critic update929

rule that resamples TD updates to allow the learned policy to be distant from the930

data policy without catastrophic divergence. We show how this algorithm works931

on a well-understood toy example from the literature, and then characterize its932

performance with varying parameterization on a specially-constructed offline RL task.933

This is a novel approach to stabilizing off-policy RL, and sets the stage for future934

work on larger tasks.935

Paper in preparation, by Manek, Roderick, and Kolter (2023)936

55

March 9, 2023
DRAFT

3.1 Introduction937

Reinforcement Learning (RL) aims to learn policies that maximize rewards in Markov938

Decision Processes (MDPs) through interaction, generally using Temporal Difference939

(TD) methods. In contrast, offline RL focuses on learning optimal policies from a940

static dataset sampled from an unknown policy, possibly a policy designed for a941

different task. Thus, algorithms are expected to learn without the ability to interact942

with the environment. This is useful in environments that are expensive to explore943

(such as running a Tokamak nuclear reactor [7]), or high-dimensional environments944

with cheap access to expert or near-expert trajectories (such as video games). Levine945

et al. [30] present a comprehensive survey of the area.946

Since in offline RL the data is gathered before training begins, there is a mismatch947

between the the state-distributions implied by the learned policy and the data. When948

applying naive RL algorithms in this setting, they tend to bootstrap from regions949

with little or no data, causing runaway self-reinforcement. Offline RL algorithms950

like Conservative Q-Learning (CQL) [26], on the other hand, generally constrain the951

learned policy to remain within the support of the data. While this works well in952

practice, there still remains a large gap in performance between online and offline953

RL. One reason for this is an additional subtlety to distribution shift: because of the954

combination of off-policy RL and function approximation, it is possible for RL to955

diverge if the generating policy and the learned policy are sufficiently different.956

We illustrate a simple case in Figure 3.1, where a simple grid environment is designed957

to elicit the shortest trajectory from start (S) to goal (G). Agents can move one step958

in each cardinal direction, reaching the goal yields a unit reward, and the episode959

ends on reaching the goal or any marked cell (X). We generate a dataset by following960

a suboptimal data policy (���) with sufficient dithering to guarantee that every state-961

action pair is represented. If we use a tabular Q-function, we can recover the optimal962

policy () and obtain the true value function. When we use a linear Q-function,963

however, the error is much larger. We find that about half of random initializations964

lead to Q-functions that either diverge or converge to large error. This shows how965

56

March 9, 2023
DRAFT

March 8, 2023
DRAFT

S

X X

X G

Figure 3.1: A simple grid environment illustrating distribution shift despite complete
support. We wish to learn the optimal trajectory () from a suboptimal data policy
(���) which is ϵ-dithered to get sufficient coverage. When we apply Q-learning methods
to this, training often diverges to arbitrarily poor values. This is a consequence of
distribution shift. In this paper, we propose a technique to solve this divergence.

even with full coverage of states and actions, distribution shift can be a significant966

source of error. We provide more details in Section 3.5.1.967

Contributions In this chapter, we introduce POP-TD, a novel method of mitigating968

the error from off-policy learning. We show theoretically that this method bounds the969

off-policy approximation error for TD-based RL methods. We illustrate the resampling970

process on a well-known toy example, and then demonstrate its effectiveness on an971

example of offline RL under distribution shift.972

3.2 Related Work973

Off-Policy TD Learning Instability from learning off-policy has also been studied974

in the classic RL literature. First described by Tsitsiklis and Van Roy [53], the use975

of TD learning, function approximation, and off-policy sampling may cause severe976

instability or divergence. This is known as the deadly triad [48, p. 264] and even if977

57

March 9, 2023
DRAFT

many variants of TD still converge, the quality of the solution at convergence may be978

arbitrarily poor [24].979

There are three existing lines of work in the literature that attempt to resolve this:980

regularization, Emphatic reweighing, and TD Distribution Optimization (TD-DO).981

The first attempts to regularize TD, typically with L2-norm weight regularization.982

Alternative regularization schemes are L1 [33], convex [60], and bounds propagation983

[25]. There are well-documented failure modes related to regularization [35]. The984

second line started with Emphatic-TD, in which Sutton, Mahmood, and White [49]985

note that it is possible to reweigh samples obtained off-policy so they appear to be986

on-policy. Such methods learn the follow-on trace using Monte-Carlo methods (in the987

original), TD [19, 63] or techniques similar to TD [17]. The third method, TD-DO,988

works by solving a small optimization problem on each TD update to reweigh samples989

to satisfy the Non-Expansion Criterion, which we introduce in the next section.990

Off-Policy and Offline Deep RL Nearly all modern TD-based deep RL methods991

perform off-policy learning in practice. To improve data efficiency and learning992

stability, an experience replay buffer is often used. This buffer stores samples from993

an outdated version of the policy [38]. Additionally, exploration policies, such as a994

epsilon greedy [48, p. 100] or Soft Actor Critic (SAC)-style entropy regularization [15]995

1, are often used, which also results in off-policy learning. In practice, the difference996

between the current policy and the samples in the buffer is limited by setting a limit to997

the buffer size and discarding old data; or by keeping the exploration policy relatively998

close to the learned policy. In practice, this is sufficient to prevent outright divergence,999

though the extent to which it decreases performance is not well-understood.1000

However, in the offline RL setting where training data is static, there is usually a1001

much larger discrepancy between the state-action distribution of the data and the1002

distribution induced by the learned policy. This discrepancy presents a significant1003

challenge for offline RL [30]. While this distributional discrepancy is often presented1004

1While the original SAC algorithm is technically on-policy since it learns an entropy-regularized
value function, the entropy-regularization is often dropped from the value-function estimate in
practice to improve performance.

58

March 9, 2023
DRAFT

as a single challenge for offline RL algorithms, there are two distinct aspects of this1005

challenge that can be addressed independently: support mismatch and proportional1006

mismatch. When the support of the two distributions differ, learned value functions1007

will have arbitrarily high errors in low-data regions. Support mismatch is dealt with1008

by either constraining the KL-divergence between the data and learned policies [11,1009

28, 59], by penalizing or pruning low-support (or high-uncertainty) actions [26, 61,1010

22].1011

Even when the support of the data distribution matches that of the policy distribution,1012

naive TD methods can produce unbounded errors in the value function [53]. We call1013

this challenge proportional mismatch.1014

Importance sampling (IS) [44] is one of the most widely used techniques to address1015

proportional mismatch. The idea with IS is to compute the differences between the1016

data and policy distributions for every state-action pair and re-weight the TD updates1017

accordingly. However, these methods suffer from variance that grows exponentially in1018

the trajectory length. Several methods have been proposed to mitigate this challenge1019

and improve performance of IS in practice [16, 13, 40, 39, 32], but the learning is still1020

far less stable than other offline deep RL methods. In this work, we propose a new1021

method to bound the value-function approximation errors caused by proportional1022

mismatch without the need to explicitly compute (or approximate) IS weights.1023

3.3 Problem Setting and Notation1024

Consider the n-state Markov chain (S, P, R, γ), with state space S, transition function1025

P : S × S → R+, reward function R : S → R, and discount factor γ ∈ [0, 1]. Because1026

the state-space is finite, it can be indexed as S = {1, . . . , n}. This allows us to use1027

matrix rather than operator notation. The expected γ-discounted future reward of1028

being in each state V (s) := E [
∑∞

t=0 γ
tR(st)| s0 = s] is called the value function. The1029

value function is consistent with Bellman’s equation (in matrix form):1030

V = R + γPV. (3.1)1031

59

March 9, 2023
DRAFT

In the linear setting, we approximate the value function as V (s) ≈ w⊤ϕ(s), where1032

ϕ : S → Rk is a fixed basis function and we estimate parameters w ∈ Rk. In matrix1033

notation, we write this as V ≈ Φw.1034

In this work, we are interested in the offline learning setting, where the sampling1035

distribution µ differs from the stationary distribution ν. In this setting, the TD1036

solution is:1037

Φw = Πµ(R + γPΦw), (3.2)1038

where Πµ = Φ(Φ⊤DµΦ)
−1Φ⊤Dµ is the projection onto the column space of Φ weighted1039

by the data distribution µ through the matrix Dµ = diag(µ). This projection may be1040

arbitrarily far from the true solution, and so the error may be correspondingly large.1041

The literature bounds the error as:1042

Theorem 2. The error at the TD fixed point is ∥Φw − V ∥Dµ. Lemma 6 from [53]1043

bounds this in terms of error projecting V onto the column space of Φ:1044

∥Φw − V ∥Dµ ≤
1

1− γ
∥ΠµV − V ∥Dµ (3.3)1045

1046

3.3.1 The Non-Expansion Criterion (NEC)1047

Thus far we have left open the notion of a “safe” distribution to resample TD updates1048

to. The on-policy distribution must be safe, but we need to establish a criteria for1049

acceptable off-policy distributions. Tsitsiklis and Van Roy lay the groundwork for1050

this by analyzing the training of on-policy TD as a dynamical system and showing1051

that once TD reaches its fixed point, subsequent TD updates form a non-expansive1052

mapping around that fixed point (1996, lemma 4), and therefore prove that on-policy1053

TD does not diverge.1054

To do this, they begin with the fact that error bounds from on-policy TD follow1055

60

March 9, 2023
DRAFT

the property that the D−norm of any vector x ∈ Rn is non-expansive through the1056

transition matrix. That is: ∥Px∥D ≤ ∥x∥D, where D = diag(π). Kolter [24] extend1057

this analysis to the off-policy case, deriving a linear matrix inequality (LMI) under1058

which the TD updates are guaranteed to be non-expansive around the fixed point.1059

This is the Non-Expansion Criterion (2011):1060

∥Φw − V ∥D ≤
1 + γκ(D−1/2D1/2)

1− γ
∥ΠDV − V ∥D (3.4)1061

From this bound, he derives The non-expansion criterion:1062

∥ΠDPΦw∥D ≤ ∥Φw∥D (∀w ∈ Rn) (3.5)1063

This holds if and only if the matrix FD is positive semi-definite1064

FD ≡
[

Φ⊤DΦ Φ⊤DPΦ

Φ⊤P⊤DΦ Φ⊤DΦ

]
≽ 0 (3.6)1065

Equivalently, in terms of the expectation over states:1066

Es∼µ,s′∼p(·|s)

[[
ϕ(s)ϕ(s)⊤ ϕ(s)ϕ(s′)⊤

ϕ(s′)ϕ(s)⊤ ϕ(s)ϕ(s)⊤

]]
≽ 0. (3.7)1067

This constraint describes a convex subset of D. As a 2k × 2k matrix (where k is the1068

number of features), F is prohibitively large to enumerate for any real RL problem,1069

and so our algorithm is designed to make use of this without ever constructing it1070

directly. Further, we notice that the construction of FD depends on P , the transition1071

matrix of the underlying Markov process, which complicates how we construct it from1072

samples.1073

61

March 9, 2023
DRAFT

For convenience, we write this as:1074

Es∼q[F (s)] ≽ 0, where (3.8)1075

F (s) = Es′∼p(s′|s)

[[
ϕ(s)ϕ(s)⊤ ϕ(s)ϕ(s′)⊤

ϕ(s′)ϕ(s)⊤ ϕ(s)ϕ(s)⊤

]]
. (3.9)1076

KNEC is an expectation over some state distribution q and transition distribution1077

p(s, s′) = p(s′|s)µ(s). Because it is an LMI, the satisfying state distributions q form1078

a convex subset.1079

Directly constructing F (s) or F (s, s′) is impossible on all but the simplest examples –1080

it would take O(k2n) or O(k2n2) memory to hold all the necessary data. Instead we1081

exploit the structure inherent in the problem to make use of F (s) without creating it.1082

3.4 Projected Off-Policy TD (POP-TD)1083

We propose an alternative approach to stabilizing off-policy training, based on the1084

Non-Expansion Criterion [24]. POP-TD identifies a convex set of “safe” distributions1085

that satisfy KNEC and reweighs TD updates to come from that set. In contrast to1086

TD-DO, POP-TD uses solves a different optimization problem using a two-timescales1087

update with fixed cost per iteration, allowing it to scale to real-world problems.1088

We begin by deriving the projected off-policy update for Markov Chains, without1089

a separate policy function. We will extend this derivation to support actions and1090

Markov Decision Processes (MDPs) in Section 3.4.5. Our algorithm resamples TD1091

updates so they come from some distribution q for which KNEC holds. Given input1092

data (x1, x2, . . .), this is the same as finding a set of weights q1, q2, . . . such that1093 ∑
i

qi · F (xi) ≽ 0 (3.10)1094

62

March 9, 2023
DRAFT

3.4.1 I- and M-projections1095

The Kullback-Leibler divergence is an asymmetric measure, and so it is usually1096

the case that minq KL(q||µ) ̸= minq KL(µ||q). The former (“from µ to q”) is1097

an information (or I-)projection, which tends to under-estimate the support of q1098

potentially excluding possible sampling distributions to reweigh to. The latter (“from1099

q to µ”) is a moment (or M-)projection, which tends to over-estimate the support of1100

q and avoid zero solutions. In our solution, we are proposing using an I-projection1101

instead of the M-projection used by Kolter [24].1102

3.4.2 Optimizing the distribution1103

In the previous section we have characterized a convex subset of off-policy distributions1104

under which TD learning is guaranteed not to diverge. If we can discover any such1105

distribution for a particular TD problem, we can reweigh our TD updates (from any1106

distribution) so they appear consistent with this reweighing distribution. This is1107

related to the main insight in Emphatic-TD [49], with the key innovation that we1108

can take any non-expansive distribution not just the on-policy distribution.1109

We can now write down the optimization problem that we wish to solve:1110

minimize
q

KL(q||µ) s.t. Es∼q[F (s)] ≽ 0 (3.11)1111

We are searching for q, the closest distribution to the sampling distribution µ such1112

that F is PSD under q. Note that we could in principle minimize any notion of1113

“closest” to find some satisfying distribution – for example Kolter [24] explores the1114

effects of minimizing KL(µ||q).1115

We construct the dual of this problem:1116

maximize
Z≽0

minimize
q

KL(q||µ)− trZ⊤Es∼q[F (s)] (3.12)1117

63

March 9, 2023
DRAFT

Using the Lagrange multiplier Z ∈ R2k×2k, we solve the inner optimization problem:1118

minimize
q

−H(q)− Es∼q[log µ(s) + trZ⊤F (s)] (3.13)1119

Writing down Lagrangian and solving for the optima, we obtain:1120

q∗(s) ∝ µ(s) exp(trZ⊤F (s)) (3.14)1121

(Subject to the constraint that q∗(s) is normalized so it must sum to 1 over all s.)1122

Plugging this back into our dual formulation, we obtain the optimization problem:1123

maximize
Z≽0

− logEs∼µ[exp(trZ
⊤F (s))] (3.15)1124

Which we can simplify to1125

minimize
Z≽0

Es∼µ[exp(trZ
⊤F (s))] (3.16)1126

As discussed earlier, F (s) cannot be directly constructed; instead, we assume that Z1127

holds a specific structure and optimize the problem.1128

3.4.3 The structure of Z1129

Our next goal is to transform this constrained optimization problem into an uncon-1130

strained problem over a low-rank version of Z, suitable for learning via SGD.1131

We assume (and later check!) that the solution for Z is low-rank. Intuitively, this is1132

because Es∼µ[F (s)] is PSD when µ is close to π, and for most MDPs, sampling off-1133

policy leads to only a small number of negative eigenvalues that need to be corrected1134

by Z. Kolter [24] provides a technical explanation: by the KKT conditions, Z will1135

have rank complementary to Es∼µ[F (s)], and the latter is expected to be full rank. It1136

is worth noting that this “almost-PSD” assumption is common in the field.1137

64

March 9, 2023
DRAFT

We make the strong assumption that Z has rank m, where m << k. We apply the1138

Burer-Montiero approach [4] to convert the constrained optimization problem over Z1139

into an unconstrained optimization over matrices A ∈ Rk×m and B ∈ Rk×m:1140

Z⋆ =

[
A

B

][
A

B

]T
(3.17)1141

This allows us to represent the rank-m PSD matrix Z∗ in terms of the unconstrained1142

matrices A and B. Substituting this into the dual formulation, we get:1143

minimize
A,B

Es∼µ

exp
tr

[
A

B

][
A

B

]T
F (s)

 (3.18)1144

We can leverage the structure of F (s) to simplify the trace term:1145

trZTF (s) (3.19)1146

= tr

[
A

B

]T [
A

B

]T
F (s) (3.20)1147

= tr

[
A

B

]T
F (s)

[
A

B

]
(3.21)1148

= tr

[
A

B

]T
Es′∼p(s′|s)

[
ϕ(s)ϕ(s)T ϕ(s)ϕ(s′)T

ϕ(s′)ϕ(s)T ϕ(s)ϕ(s)T

][
A

B

]
(3.22)1149

= tr
[
(A+B)Tϕ(s)ϕ(s)T (A+B)− 2BTEs′∼p(s′|s)

[
ϕ(s)(ϕ(s)− ϕ(s′))T

]
A
]

(3.23)1150

= ∥(A+B)Tϕ(s)∥2 − tr
[
2BTEs′∼p(s′|s)

[
ϕ(s)(ϕ(s)− ϕ(s′))T

]
A
]

(3.24)1151

This allows us to rewrite the optimization problem as:1152

minimize
A,B

Es∼µ

[
exp

(
∥(A+B)Tϕ(s)∥2
−tr

[
2BTEs′∼p(s′|s)

[
ϕ(s)(ϕ(s)− ϕ(s′))T

]
A
])] (3.25)1153

65

March 9, 2023
DRAFT

where the small parameters A and B can be optimized with regular gradient-descent1154

methods.1155

3.4.4 Update rules1156

We can’t directly optimize our problem because that would require us to estimate1157

the inner expectation term. Instead, we use a two-timescales approach by estimating1158

two (dependent) quantities separately and improving them at potentially different1159

rates. This (with a little tuning) can generally converge to a valid solution.1160

We choose to estimate the matrices A,B ∈ Rk×m and separately the function gθ :1161

S ∈ R where1162

gθ(s) ≈ trZTF (s) (3.26)1163

which can be approximated as a linear function (or a neural network) with parameters1164

θ. The size of the weights learned by POP-TD are therefore O(k), comparable to the1165

size of vanilla Q-learning.1166

This corresponds to the auxiliary loss term for A,B:1167

LA,B(s, s
′) = exp(gθ(s))

[
∥(A+B)Tϕ(s)∥2 − tr

[
2BTϕ(s)(ϕ(s)− ϕ(s′))TA

]]
(3.27)1168

and for g:1169

Lg(s, s
′) =

(
gθ(s)−

[
∥(A+B)Tϕ(s)∥2 − tr

[
2BTϕ(s)(ϕ(s)− ϕ(s′))TA

]])2
(3.28)1170

And finally, to complete this, we multiply each update of w by exp(g(s)) to resample1171

it so it appears to come from the “safe” distribution, which completes the description1172

of the algorithm!1173

Computing the loss A naive implementation of the loss function will require1174

intermediate matrices of size [k × k]. We can improve speed by computing the loss in1175

66

March 9, 2023
DRAFT

terms of [m× 1] intermediates instead. For some (s, s′), this can be done as:1176

MA = ATϕ(s) ∈ Rm
1177

M ′
A = ATϕ(s′) ∈ Rm

1178

MB = BTϕ(s) ∈ Rm
1179

LA,B(s, s
′) ≡ exp(gθ(s))

[
∥MA∥2 + ∥MB∥2 + 2M ′

A ·MB

]
(3.29)1180

Lg(s, s
′) ≡

(
gθ(s)−

[
∥MA∥2 + ∥MB∥2 + 2M ′

A ·MB

])2
(3.30)1181

where · is the dot product. This sequence of operations should be O(mk), which is1182

much quicker than the naive O(mk2).1183

3.4.5 POP-Q-Learning1184

Thus far, we have focused on Markov Reward Processes. For RL problems, we need1185

to extend this approach to Markov Decision Processes (MDPs). An MDP is a tuple,1186

(S,A, P, R, γ), with state space S, transition function P : S ×A× S → R+, reward1187

function R : S × A → R, and discount factor γ ∈ [0, 1]. The goal in this setting is1188

to find a probabilistic policy π : S ×A → R+ that maximizes the future discounted1189

reward:1190

π⋆ = argmax
π

Eπ

[∞∑
t=0

γtR(st, at)

]
(3.31)1191

Many RL methods use variations of Q-learning [57, 38, 15, 26], which involves learning1192

a state-action value function, or Q-function:1193

Qπ(s, a) = Eπ

[∞∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 = s, a0 = a

]
(3.32)1194

By considering a fixed policy π, a combined state-space X = S × A, and a policy-1195

conditioned transition function P̃ π((s, a), (s′, a′)) = P (s, a, s′)π(s′, a′), any MDP1196

reduces to a Markov Chain. Thus, as long as the NEC is satisfied in this modified1197

state-space, we can bound the approximation error of the Q-function. See Section 3.4.51198

67

March 9, 2023
DRAFT

Algorithm 1 Deep POP-Q-Learning

Initialize Q-function, QθQ , g-function, gθg , dual variable vector y, and some policy
πθπ .
for step t in 1, . . . , N do
Sample mini-batch (s, a, r, s′) ∼ µ.
Sample ã ∼ πθπ(s), ã

′ ∼ πθπ(s
′).

Compute features from penultimate layer of Q-network:
ϕ← QθQ(s, a), ϕ

′ ← QθQ(s
′, ã′).

Update g-function and dual variable vectors:
θgt ← θgt−1 − ηg∇θgLg(s, s

′)
At ← At−1 − ηA∇ALA(s, s

′)
Bt ← Bt−1 − ηB∇BLB(s, s

′)
Update Q-function using re-weighted Q-loss update:
θQt ← θQt−1 − ηQ exp(gθg(s, a))∇θQLQ(θ

Q)
Update policy with SAC-style loss:
θπt ← θπt−1 − ηπ∇θπ [QθQ(s, ã)− log πθπ(ã|s)]

end for

for a detailed derivation.1199

Finally, for our method to applied to modern deep RL problems, we must extend our1200

approach to non-linear Q-functions. To do so, we approximate the Q-function with a1201

neural network, QθQ parameterized by θQ and consider a stochastic parameterized1202

policy πθπ . To update QθQ , we used a squared Bellman loss, LQ(θ
Q) = (QθQ(s, a)−1203

r − γQθQ(s
′, πθπ(s

′)))2, which we reweigh with eg(s) as before. For our offline RL1204

experiments, we also add CQL regularization [26] to our Q-learning updates to1205

prevent over-optimism on low-support regions of the state-action space. To update1206

our linear dual variables y, we use the penultimate layer of QθQ as our feature vector.1207

Finally, we use a SAC-style entropy regularized loss to update our policy network,1208

πθπ . Algorithm 1 provides an overview of our method.1209

68

March 9, 2023
DRAFT

3.5 Experiments and Discussion1210

We first apply POP-TD to a well-understood example so that we can directly illustrate1211

the how it resamples TD updates to a “safe” distribution. We use the simple three-1212

state task from Figure 3.2, including the specified transition function, value function,1213

and basis. Since this is a policy evaluation task, there is no policy to be separately1214

learned.1215

For illustration purposes, we select the family of distributions π = (h/2, h/2, 1 − h)1216

parameterized by h ∈ [0, 1]. This characterizes the possible distributions of data1217

that we will present to POP-TD and naive TD in this experiment. The on-policy1218

distribution corresponds to ho ≈ 0.51, and divides the family of distributions into a1219

left subset (h ≤ ho) where KNEC holds and a right subset (ho > 0.5) where KNEC1220

does not. This is immediately apparent in Figure 3.2, where we plot the error at1221

convergence from running naive- and POP-TD above, and the effective distribution of1222

TD updates after reweighing below. In the left subset, where KNEC holds, POP-TD1223

does not resample TD updates at all. Therefore, the error of POP-TD tracks naive1224

TD (top), and the effective distribution of TD updates in POP-TD and naive TD are1225

the same as the data distribution (bottom).1226

In the right subset, we observe that naive TD converges to poor solutions with1227

large error while POP-TD is able to learn with low error. Directly computing the1228

effective distribution, we see that naive TD adheres to the data distribution but1229

POP-TD resamples the TD updates. Looking at the behavior of POP-TD in the1230

right subset, we see that POP-TD resamples updates to the on-policy distribution1231

po in p ∈ [po, 0.9], corresponding to the horizontal segment. This allows the learned1232

Q-function to have very low error in that domain. As the data distribution becomes1233

more extreme (p ∈ [0.9, 1)), POP-TD is not quite able to learn the resampling ratio,1234

and so the effective distribution shifts away from po. This leads to a corresponding1235

slight increase in error at extreme ratios. From this we observe that POP-TD requires1236

full support of the sampling distribution, similar to many offline RL algorithms [26,1237

47].1238

69

March 9, 2023
DRAFT

This simple experiment cleanly illustrates how POP-TD resamples TD updates to1239

come from a “safe” distribution, and how that can greatly reduce the error in a policy1240

evaluation task.1241

3.5.1 POP-Q on GridWorld1242

In this experiment, we consider the the simple grid environment from Figure 3.1,1243

modified to add transitions from terminating states to the starting state. Our goal1244

is to approximate the true Q-function with minimal error. Our training data is1245

sampled following the suboptimal data policy (���), adding uniform random dithering1246

to guarantee that every state-action pair is represented. We represent the Q-function1247

as a linear function with a fixed random basis Φ ∈ R64×53, training it to convergence1248

using naive Q-learning and linear POP-Q separately. For POP-Q, we also randomly1249

initialize matrices A,B ∈ R53×4 and a tabular g ∈ R64 separately. (We will later1250

consider an approximate g.)1251

Setting the rank of A,B: We could simply set the rank of A and B as any other1252

hyperparameter, but since this problem is sufficiently small we can instead compute1253

the minimum rank directly. To do this, we compute the degree of rank deficiency of1254

the matrix Es[F (s)] from Equation (3.9) on our dataset, and set the rank of A and1255

B so the sum of the rank of Es[F (s)] and A and B is at least k. For this example,1256

for k = 53, we find that rank(A) = rank(B) = 4 is sufficient for this example.1257

Results with an exact, tabular g1258

Since tabular Q-learning always converges to the global optimum [57], we use that to1259

compute the ground-truth Q-function. All error reported is relative to that assumed1260

ground truth.1261

Figure 3.3 shows the distribution of errors achieved by vanilla and POP Q-learning1262

over 25 different bases on our task. Vanilla Q-learning performs consistently poorly,1263

achieving a (large) amount of error at all seeds. This is expected because we have1264

deliberately engineered the task to be unstable. In comparison, POP-TD improves1265

70

March 9, 2023
DRAFT

performance over most seeds, and in some cases enables near-perfect fitting of the1266

Q-function.1267

Throughout this chapter we have drawn a distinction between importance sam-1268

pling/Emphatic TD methods and our work. While the former attempts to resample1269

to the on-policy distribution, our work seeks to resample to the closest stable distribu-1270

tion. We illustrate this difference in Figure 3.4, where we display the rates at which1271

states are visited in our GridWorld. The distribution in our dataset (top-right) is far1272

from the on-policy distribution (top-left), which is what importance sampling and1273

Emphatic methods will attempt to resample to. In comparison, POP-Q resamples1274

minimally (bottom row), where the effective distribution reached is very close to the1275

data distribution.1276

Results with an approximate, linear g1277

A key step in adopting POP-Q is ensuring that all parameters are at most order1278

O(k) (i.e. comparable to the size of the learned weights) and are therefore learnable1279

with the same time and space as regular TD. The matrices A and B are sized k ×m,1280

where m << k, and so are sufficiently small. We now need to approximate g as a1281

linear function with fixed bases vectors Φg = (ϕg,1, ϕg,2, ..., ϕg,n) and learned weights1282

wg ∈ Rl of size l < n:1283

g(s) = ϕg,s · wg (3.33)1284

To understand the relationship between the degree of approximation (as measured by1285

the size of the basis l) and the performance of our system, we initialize 25 different1286

n× n bases and report the performance as the bases are truncated down from 64 to1287

1. This is illustrated in Figure 3.5.1288

Figure 3.5 reveals that the performance of POP-Q is (as expected) sensitive to the1289

exact basis chosen. For some bases, the error increases with only a small amount of1290

approximation, but for some “lottery-ticket” bases, this continues to work even as1291

the bases are truncated to rank 1. For some bases, this continues to work despite1292

71

March 9, 2023
DRAFT

extreme approximation is because the degree of resampling required is minimal and1293

the system is fairly easy to resample.1294

3.5.2 Linear POP-Q on GridWorld1295

The current experiments with POP-Q learning all use a tabular g. This works, but1296

takes the same memory as would learning a tabular value function, which would1297

provably converge to the global optimum (side-stepping the entire problem).1298

Currently, we are evaluating POP-Q with approximate g on our GridWorld example.1299

We are running an ablation study to understand the relationship between the degree1300

of approximation of g and the performance of the resultant system.1301

This is a similar experiment to that in Section 3.5.1, but with linear approximation.1302

One key step on the road to getting POP-Q to work on larger experiments is1303

to understand the behavior of POP-Q under function approximation. Function1304

approximation is necessary because, in the tabular case, POP-Q uses as much1305

memory as a tabular Q-learning algorithm would; this is intractable for most practical1306

problems. We also wish to exploit the generalization afforded to us by neural networks,1307

to hopefully learn more accurate models with less data.1308

In this experiment, we define gϕ : S → R as:1309

gϕ = Φgθ
g (3.34)1310

for basis Φg ∈ Rn×m and learned weights θg ∈ Rm. We are given some random Φg1311

and wish to learn θg so that gϕ acts as the reweighing function of POP-TD.1312

We conduct a series of experiments to understand the relationship between the degree1313

of function approximation in g and the quality of the learned model. Our example is1314

engineered so that the ratio of two specific transitions (where the two trajectories1315

initially diverge) most determines stability.1316

When performing experiments, we note that the performance of POP-TD depends1317

sharply on the condition number of Φ, but not necessarily that of Φg. Specifically, we1318

72

March 9, 2023
DRAFT

see that an orthogonal initialization step on Φ is crucial for performance. (In this1319

step we set Φ to the orthogonal matrix of the QR-decomposition of a matrix where1320

entries are sampled uniformly at random.) We conjecture that this happens because1321

POP-TD seeks to stochastically learn ΦTAΦ, and a poor condition number of Φ leads1322

to values that span multiple orders of magnitude and linear approximation is known1323

to perform poorly on such data.1324

3.6 Conclusion1325

In this chapter we introduced POP-TD, a method for effective TD learning under1326

off-policy distributions, with applications to offline RL and learning under large1327

distribution shifts. Unlike existing emphatic TD and importance sampling methods1328

which resample to the on-policy distribution, POP-TD resamples to the closest1329

distribution under which TD will provably not diverge.1330

We present POP-TD on an existing “deadly triad” example in the literature, showing1331

how the resampling process operates in theory. We extend this to a more general1332

GridWorld-style Q-learning task which diverges under vanilla TD, but is consistently1333

solved by POP-Q-learning.1334

A key strength of POP-Q-learning is that is achieves all this with a per-loop com-1335

pute and memory overhead of the same order as Q-learning methods, and can be1336

implemented and optimized in the same loop as any TD or Q-learning method. In1337

this sense, it offers a cheap mechanism to stabilize off-policy TD, particularly in the1338

context of offline RL.1339

A possible future expansion of this project is to integrate this with an existing1340

offline RL method such as Conservative Q-Learning (CQL) and examine whether this1341

improves performance. We propose CQL specifically because it constrains actions1342

to remain within the support of the data, but does not explicitly constrain the1343

distribution of states to minimize distribution shift. POP methods require adequate1344

support (which CQL provides), and in turn are able to minimize distribution shift.1345

73

March 9, 2023
DRAFT

This suggests that the two algorithms may have some symbiotic relationship.1346

74

March 9, 2023
DRAFT

March 8, 2023
DRAFT

-1

3
POP-TD

Naive TD

F (s) ≽ 0 F (s) ̸≽ 0
lo
g
1
0
E
rr
or

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

.2

.4

.6

.8

POP-TD

Naive TD

Distrib. param. h, where π = [h/2, h/2, 1− h]

eff
ec
ti
ve

d
is
tr
ib
.
p

Figure 3.2: The error in the learned value function by naive- and POP-TD, plotted
against a varying sampling distribution. In the left half of the plot, KNEC holds, and
so POP-TD tracks the error of naive TD closely. In the right half of the plot naive
TD diverges, while POP-TD resamples the data to a “safe” distribution and does not
diverge.

75

March 9, 2023
DRAFT

1 2 3 4 5 6

log(Error)

0

2

4

6

8

10

12

14

C
ou

n
t

Q-Value Errors over 25 random initializations.

pop

naive

Figure 3.3: Log Q-function errors for naive and POP Q-Learning on Figure 3.1, over
25 randomly sampled bases. Errors are computed using a tabular g function, and bins
are exponentially wide. POP-Q substantially reduces error in most of the sampled
bases.

76

March 9, 2023
DRAFT

0% 1% 18% 18%

0% 1% 16% 2%

0% 1% 15% 14%

0% 0% 1% 12%

Optimal Policy

11% 11% 14% 16%

8% 4% 2% 3%

7% 5% 3% 2%

7% 5% 1% 1%

Data Policy

10% 9% 12% 11%

8% 5% 3% 4%

9% 6% 4% 3%

7% 7% 2% 2%

With POP (seed=7)

10% 10% 9% 12%

10% 5% 3% 4%

8% 5% 4% 3%

7% 6% 2% 2%

With POP (seed=14)

Figure 3.4: Rates at which states are visited in GridWorld. On the top row, we
show how the optimal policy (left) is very far from the data policy (right). On the
bottom row, we show the effective distribution after POP-Q resamples the data. The
effective distribution is very close to the data distribution, despite the tremendous
improvement in error.

77

March 9, 2023
DRAFT

102030405060

Size of basis for g

0

5

10

15

20

25

R
an
d
om

S
ee
d

Error for POP-Q with linear g

0

2

4

6

8

10

12

14

16

Figure 3.5: Error for POP-Q with linear g functions. Each row corresponds to one
starting basis, and each column corresponds to a basis size l as it is reduced from
64 to 1. The hatched cells correspond to combinations of seeds and bases in which
POP-Q performs worse than vanilla Q-learning. Under linear approximation POP-Q
greatly improves performance over vanilla TD.

78

March 9, 2023
DRAFT

Conclusion1347

We have examined two notions of stability with a subtle relationship: that of learned1348

dynamics models, and the training of reinforcement learning algorithms. In doing1349

so, we have introduced new techniques in both areas, as well as filled in a gap in the1350

literature on the unsuitability of regularization to solve instability in RL.1351

One key gap in the RL literature that we hope to address in the future is how we1352

should regularize deep RL in a principled manner. While our prior work shows that1353

simple ℓ2 regularization can cause divergence, the literature is ripe for either adaptive1354

regularization schemes that can detect and avoid pathological behavior, or for novel1355

non-convex regularization that does not exhibit the same tendency to diverge.1356

Separately, there remains a large gap in a key area within offline RL in dealing with1357

the distributional shift problem. While there have been many recent advances in the1358

field, these advances have been largely incremental, and the field remains ripe for1359

a novel perspective that can address this. We propose that POP-TD is that novel1360

perspective. Unlike the existing literature, the key insight that POP-TD brings to1361

the field is that we can resample to “safe” off-policy distributions that are close to the1362

data distribution, instead of the on-policy distribution which may be arbitrarily far.1363

With these novel POP techniques, we hope to allow offline RL to both (1) resample1364

the data as little as possible thereby preserving the signal in the data, and (2) learn1365

to generalize from a set of diverse and possibly even adversarial experts that complete1366

tasks in mutually incompatible ways.1367

79

March 9, 2023
DRAFT

80

March 9, 2023
DRAFT

Notation and Definitions1368

Standard notation for RL concepts through this thesis.1369

Symbol Description

n ∈ Z+ Number of states.

k ∈ Z+ Number of features in the value basis.

π ∈ Rn on-policy distribution.

µ ∈ Rn sampling distribution, may be on- or off-policy.

Φ ∈ R[n×k] Feature basis for the value function

ŵ ∈ R[k×1] Linear weights for value function, fit using least-squares

regression of V on Φ.

w∗(η) ∈ R[k×1] Linear weights for value function, learned using TD.

Φw∗(η) ∈ R[n×1] Learned value function

V ∈ R[n×1] True value function

∥V ∥ ∈ R Error from guessing zeros, equivalent to the threshold for

a vacuous example

∥x∥ ∈ R+
0 ℓ2-norm of vector or matrix x, equal to

√
x⊤x

∥x∥D ∈ R+
0 ℓ2-norm of vector or matrix x under D, equal to

√
x⊤Dx

81

March 9, 2023
DRAFT

Regularization1370

Symbol Description

η ∈ R+
0 ℓ2 regularization parameter

h ∈ [0, 1] distribution parameter used to express a family of possible

sampling distributions.

ηm ∈ R+
0 ℓ2 regularization parameter for emphasis model in COF-

PAC (the Emphatic algorithm we analyze)

ηv ∈ R+
0 ℓ2 regularization parameter for value model in COF-PAC

(the Emphatic algorithm we analyze)

υ : R+ → Rn apparent distribution induced by η-regularizing the em-

phatic correction of off-policy µ to on-policy π

Projected Off-Policy1371

Symbol Description

m ∈ Z+ Number of features in the g-basis (for POP methods).

l ∈ Z+ Rank of A and B two-timescales parameters (for POP

methods).

g : S → R dual objective component, learned opposite A and B in

POP methods.

eg(s) ∈ R+ The resampling coefficient for TD updates from state s

Φg ∈ R[n×m] Feature basis for the learned linear g function

wg ∈ R[m×1] Linear weights for learned g function

A,B ∈ R[k×l] Two-timescales parameters learned alongside g in POP

methods, where l << k.

Φgwg ∈ R[n×1] Learned g function

82

March 9, 2023
DRAFT

Bibliography1372

[1] Brandon Amos, Lei Xu, and J Zico Kolter. “Input convex neural networks”. In:1373

Proceedings of the 34th International Conference on Machine Learning-Volume1374

70. JMLR.org. 2017, pp. 146–155.1375

[2] Caroline Blocher, Matteo Saveriano, and Dongheui Lee. “Learning stable dynam-1376

ical systems using contraction theory”. In: 2017 14th International Conference1377

on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE. 2017, pp. 124–1378

129.1379

[3] Byron Boots, Geoffrey J Gordon, and Sajid M Siddiqi. “A constraint generation1380

approach to learning stable linear dynamical systems”. In: Advances in neural1381

information processing systems. 2008, pp. 1329–1336.1382

[4] Samuel Burer and Renato DC Monteiro. “A nonlinear programming algorithm1383

for solving semidefinite programs via low-rank factorization”. In: Mathematical1384

Programming 95.2 (2003), pp. 329–357.1385

[5] Yize Chen, Yuanyuan Shi, and Baosen Zhang. “Optimal Control Via Neural1386

Networks: A Convex Approach”. In: arXiv preprint arXiv:1805.11835 (2018).1387

[6] Yinlam Chow et al. “A lyapunov-based approach to safe reinforcement learning”.1388

In: Advances in Neural Information Processing Systems. 2018, pp. 8092–8101.1389

[7] Jonas Degrave et al. “Magnetic control of tokamak plasmas through deep1390

reinforcement learning”. In: Nature 602.7897 (2022), pp. 414–419.1391

[8] Raghuram Bharadwaj Diddigi, Chandramouli Kamanchi, and Shalabh Bhatna-1392

gar. “A convergent off-policy temporal difference algorithm”. In: arXiv preprint1393

arXiv:1911.05697 (2019).1394

83

March 9, 2023
DRAFT

[9] Simon S Du et al. “Stochastic variance reduction methods for policy evaluation”.1395

In: International Conference on Machine Learning. PMLR. 2017, pp. 1049–1058.1396

[10] William Fedus et al. “Revisiting fundamentals of experience replay”. In: Inter-1397

national Conference on Machine Learning. PMLR. 2020, pp. 3061–3071.1398

[11] Scott Fujimoto, David Meger, and Doina Precup. “Off-policy deep reinforcement1399

learning without exploration”. In: International conference on machine learning.1400

PMLR. 2019, pp. 2052–2062.1401

[12] Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. “Improving PILCO1402

with Bayesian neural network dynamics models”. In: Data-Efficient Machine1403

Learning workshop, ICML. Vol. 4. 2016.1404

[13] Carles Gelada and Marc G Bellemare. “Off-policy deep reinforcement learning1405

by bootstrapping the covariate shift”. In: Proceedings of the AAAI Conference1406

on Artificial Intelligence. Vol. 33. 01. 2019, pp. 3647–3655.1407

[14] Shixiang Gu et al. “Continuous deep q-learning with model-based acceleration”.1408

In: International Conference on Machine Learning. 2016, pp. 2829–2838.1409

[15] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep1410

reinforcement learning with a stochastic actor”. In: International conference on1411

machine learning. PMLR. 2018, pp. 1861–1870.1412

[16] Assaf Hallak and Shie Mannor. “Consistent on-line off-policy evaluation”. In:1413

International Conference on Machine Learning. PMLR. 2017, pp. 1372–1383.1414

[17] Hado van Hasselt et al. “Expected eligibility traces”. In: arXiv preprint arXiv:2007.018391415

(2021).1416

[18] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level perfor-1417

mance on imagenet classification”. In: Proceedings of the IEEE international1418

conference on computer vision. 2015, pp. 1026–1034.1419

[19] Ray Jiang et al. “Learning Expected Emphatic Traces for Deep RL”. In: arXiv1420

preprint arXiv:2107.05405 (2021).1421

[20] Hassan K Khalil and Jessy W Grizzle. Nonlinear systems. Vol. 3. Prentice hall1422

Upper Saddle River, NJ, 2002.1423

84

March 9, 2023
DRAFT

[21] S Mohammad Khansari-Zadeh and Aude Billard. “Learning stable nonlinear1424

dynamical systems with gaussian mixture models”. In: IEEE Transactions on1425

Robotics 27.5 (2011), pp. 943–957.1426

[22] Rahul Kidambi et al. “Morel: Model-based offline reinforcement learning”. In:1427

Advances in neural information processing systems 33 (2020), pp. 21810–21823.1428

[23] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In:1429

arXiv preprint arXiv:1312.6114 (2013).1430

[24] J Kolter. “The fixed points of off-policy TD”. In: Advances in Neural Information1431

Processing Systems 24 (2011), pp. 2169–2177.1432

[25] Aviral Kumar, Abhishek Gupta, and Sergey Levine. “Discor: Corrective feed-1433

back in reinforcement learning via distribution correction”. In: arXiv preprint1434

arXiv:2003.07305 (2020).1435

[26] Aviral Kumar et al. “Conservative Q-Learning for Offline Reinforcement Learn-1436

ing”. In: Advances in Neural Information Processing Systems 33: Annual Con-1437

ference on Neural Information Processing Systems 2020, NeurIPS 2020, De-1438

cember 6-12, 2020, virtual. Ed. by Hugo Larochelle et al. 2020. url: https://1439

proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-1440

Abstract.html.1441

[27] Aviral Kumar et al. “DR3: Value-Based Deep Reinforcement Learning Requires1442

Explicit Regularization”. In: International Conference on Learning Representa-1443

tions. 2022. url: https://openreview.net/forum?id=POvMvLi91f.1444

[28] Aviral Kumar et al. “Stabilizing off-policy q-learning via bootstrapping error1445

reduction”. In: Advances in Neural Information Processing Systems 32 (2019).1446

[29] Joseph La Salle and Solomon Lefschetz. Stability by Liapunov’s Direct Method1447

with Applications by Joseph L Salle and Solomon Lefschetz. Vol. 4. Elsevier,1448

2012.1449

[30] Sergey Levine et al. “Offline Reinforcement Learning: Tutorial, Review, and1450

Perspectives on Open Problems”. In: CoRR abs/2005.01643 (2020). arXiv:1451

2005.01643. url: https://arxiv.org/abs/2005.01643.1452

85

https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://openreview.net/forum?id=POvMvLi91f
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643

March 9, 2023
DRAFT

[31] Sergey Levine et al. “Offline Reinforcement Learning: Tutorial, Review, and1453

Perspectives on Open Problems”. In: CoRR abs/2005.01643 (2020). arXiv:1454

2005.01643. url: https://arxiv.org/abs/2005.01643.1455

[32] Qiang Liu et al. “Breaking the curse of horizon: Infinite-horizon off-policy1456

estimation”. In: Advances in Neural Information Processing Systems 31 (2018).1457

[33] Sridhar Mahadevan et al. “Proximal reinforcement learning: A new theory of se-1458

quential decision making in primal-dual spaces”. In: arXiv preprint arXiv:1405.67571459

(2014).1460

[34] Gaurav Manek and J Zico Kolter. “Learning stable deep dynamics models”. In:1461

Advances in neural information processing systems 32 (2019).1462

[35] Gaurav Manek and J Zico Kolter. “The Pitfalls of Regularization in Off-Policy1463

TD Learning”. In: Advances in Neural Information Processing Systems. Ed.1464

by Alice H. Oh et al. 2022. url: https://openreview.net/forum?id=1465

vK53GLZJes8.1466

[36] Gaurav Manek, Melrose Roderick, and J Zico Kolter. “Projected Off-Policy TD1467

Learning Stabilize Offline Reinforcement Learning”. In: Jan. 2023.1468

[37] Nikhil Mishra, Pieter Abbeel, and Igor Mordatch. “Prediction and control with1469

temporal segment models”. In: Proceedings of the 34th International Conference1470

on Machine Learning-Volume 70. JMLR. org. 2017, pp. 2459–2468.1471

[38] Volodymyr Mnih et al. “Human-level control through deep reinforcement learn-1472

ing”. In: Nature 518.7540 (Feb. 2015), pp. 529–533. issn: 00280836. url: http:1473

//dx.doi.org/10.1038/nature14236.1474

[39] Ofir Nachum et al. “Algaedice: Policy gradient from arbitrary experience”. In:1475

arXiv preprint arXiv:1912.02074 (2019).1476

[40] Ofir Nachum et al. “Dualdice: Behavior-agnostic estimation of discounted sta-1477

tionary distribution corrections”. In: Advances in Neural Information Processing1478

Systems 32 (2019).1479

[41] Anusha Nagabandi et al. “Neural network dynamics for model-based deep1480

reinforcement learning with model-free fine-tuning”. In: 2018 IEEE International1481

Conference on Robotics and Automation (ICRA). IEEE. 2018, pp. 7559–7566.1482

86

https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://openreview.net/forum?id=vK53GLZJes8
https://openreview.net/forum?id=vK53GLZJes8
https://openreview.net/forum?id=vK53GLZJes8
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236

March 9, 2023
DRAFT

[42] Antonis Papachristodoulou and Stephen Prajna. “On the construction of Lya-1483

punov functions using the sum of squares decomposition”. In: Proceedings of1484

the 41st IEEE Conference on Decision and Control, 2002. Vol. 3. IEEE. 2002,1485

pp. 3482–3487.1486

[43] Pablo A Parrilo. “Structured semidefinite programs and semialgebraic geometry1487

methods in robustness and optimization”. PhD thesis. California Institute of1488

Technology, 2000.1489

[44] Doina Precup. “Eligibility traces for off-policy policy evaluation”. In: Computer1490

Science Department Faculty Publication Series (2000), p. 80.1491

[45] Spencer M Richards, Felix Berkenkamp, and Andreas Krause. “The lyapunov1492

neural network: Adaptive stability certification for safe learning of dynamic1493

systems”. In: arXiv preprint arXiv:1808.00924 (2018).1494

[46] Arno Schödl et al. “Video textures”. In: Proceedings of the 27th annual confer-1495

ence on Computer graphics and interactive techniques. ACM Press/Addison-1496

Wesley Publishing Co. 2000, pp. 489–498.1497

[47] Laixi Shi et al. “Pessimistic q-learning for offline reinforcement learning: Towards1498

optimal sample complexity”. In: arXiv preprint arXiv:2202.13890 (2022).1499

[48] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.1500

Second Edition. MIT press, 2020.1501

[49] Richard S Sutton, A Rupam Mahmood, and Martha White. “An emphatic1502

approach to the problem of off-policy temporal-difference learning”. In: The1503

Journal of Machine Learning Research 17 (2016), pp. 2603–2631.1504

[50] Richard S Sutton et al. “Fast gradient-descent methods for temporal-difference1505

learning with linear function approximation”. In: Proceedings of the 26th Annual1506

International Conference on Machine Learning. 2009, pp. 993–1000.1507

[51] Andrew J Taylor et al. “Episodic Learning with Control Lyapunov Functions1508

for Uncertain Robotic Systems”. In: arXiv preprint arXiv:1903.01577 (2019).1509

[52] Andrey Nikolayevich Tikhonov. “On the stability of inverse problems”. In: Dokl.1510

Akad. Nauk SSSR. Vol. 39. 1943, pp. 195–198.1511

87

March 9, 2023
DRAFT

[53] JN Tsitsiklis and B Van Roy. “An analysis of temporal-difference learning1512

with function approximation”. In: Rep. LIDS-P-2322). Lab. Inf. Decis. Syst.1513

Massachusetts Inst. Technol. Tech. Rep (1996).1514

[54] Jonas Umlauft and Sandra Hirche. “Learning stable stochastic nonlinear dynam-1515

ical systems”. In: Proceedings of the 34th International Conference on Machine1516

Learning-Volume 70. JMLR. org. 2017, pp. 3502–3510.1517

[55] Jake VanderPlas. Triple Pendulum CHAOS! http://jakevdp.github.io/1518

blog/2017/03/08/triple-pendulum-chaos/. Mar. 2017.1519

[56] Andrew J Wagenmaker et al. “First-Order Regret in Reinforcement Learning1520

with Linear Function Approximation: A Robust Estimation Approach”. In:1521

Proceedings of the 39th International Conference on Machine Learning. Ed. by1522

Kamalika Chaudhuri et al. Vol. 162. Proceedings of Machine Learning Research.1523

PMLR, July 2022, pp. 22384–22429. url: https://proceedings.mlr.press/1524

v162/wagenmaker22a.html.1525

[57] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learning1526

8.3 (1992), pp. 279–292.1527

[58] Ronald J Williams and Leemon C Baird III. Analysis of some incremental1528

variants of policy iteration: First steps toward understanding actor-critic learning1529

systems. Tech. rep. Citeseer, 1993.1530

[59] Yifan Wu, George Tucker, and Ofir Nachum. “Behavior regularized offline1531

reinforcement learning”. In: arXiv preprint arXiv:1911.11361 (2019).1532

[60] Huizhen Yu. “On convergence of some gradient-based temporal-differences1533

algorithms for off-policy learning”. In: arXiv preprint arXiv:1712.09652 (2017).1534

[61] Tianhe Yu et al. “Mopo: Model-based offline policy optimization”. In: Advances1535

in Neural Information Processing Systems 33 (2020), pp. 14129–14142.1536

[62] Shangtong Zhang, Hengshuai Yao, and Shimon Whiteson. “Breaking the Deadly1537

Triad with a Target Network”. In: CoRR abs/2101.08862 (2021). arXiv: 2101.1538

08862. url: https://arxiv.org/abs/2101.08862.1539

88

http://jakevdp.github.io/blog/2017/03/08/triple-pendulum-chaos/
http://jakevdp.github.io/blog/2017/03/08/triple-pendulum-chaos/
http://jakevdp.github.io/blog/2017/03/08/triple-pendulum-chaos/
https://proceedings.mlr.press/v162/wagenmaker22a.html
https://proceedings.mlr.press/v162/wagenmaker22a.html
https://proceedings.mlr.press/v162/wagenmaker22a.html
https://arxiv.org/abs/2101.08862
https://arxiv.org/abs/2101.08862
https://arxiv.org/abs/2101.08862
https://arxiv.org/abs/2101.08862

March 9, 2023
DRAFT

[63] Shangtong Zhang et al. “Provably convergent two-timescale off-policy actor-1540

critic with function approximation”. In: International Conference on Machine1541

Learning. PMLR. 2020, pp. 11204–11213.1542

89

	Introduction
	Learning Stable Dynamics Models
	Introduction
	Background and related work
	Joint learning of dynamics and Lyapunov functions
	Properties of the Lyapunov function

	Empirical results
	Random networks
	n-link pendulum
	Video Texture Generation

	Conclusion
	Adaptation to Stable Control and RL

	The Pitfalls of Regularization in Off-Policy TD
	Introduction
	Preliminaries and Notation
	Our Counterexamples
	Regularization cannot always mitigate off-policy training error.
	Small amounts of regularization can cause large increases in training error.
	Emphatic approaches and our counterexample
	Applied to multi-layer networks
	Over-parameterization does not solve this problem

	Related Work
	Relationship to modern RL algorithms
	Conclusion

	Projected Off-Policy TD for Offline Reinforcement Learning
	Introduction
	Related Work
	Problem Setting and Notation
	The Non-Expansion Criterion (NEC)

	Projected Off-Policy TD (POP-TD)
	I- and M-projections
	Optimizing the distribution
	The structure of Z
	Update rules
	POP-Q-Learning

	Experiments and Discussion
	POP-Q on GridWorld
	Linear POP-Q on GridWorld

	Conclusion

	Conclusion
	Notation and Definitions
	Bibliography

